期刊文献+

流固耦合下U型金属波纹管损耗因子研究 被引量:1

Study on the Loss Factor of U-shaped Metal Bellows Under Fluid-solid Coupling
下载PDF
导出
摘要 利用模态分析的方法对有、无介质以及波高、波厚对波纹管损耗因子的影响进行了研究,根据数值分析结果,得到了波纹管不同参数对损耗因子的影响变化曲线。结果表明,介质压力在3.2 MPa处存在一个损耗因子峰值;集中力的拉/压力对损耗因子的影响规律是相反的,拉力增加损耗因子减小而压力增加损耗因子增加;波高与损耗因子之间近似存在一种线性关系;壁厚为0.8 mm时损耗因子值最小。最后,通过试验验证了有限元模型和数值分析的可靠性和准确性。 The influence of bellows loss factor was studied by modal analysis method with or without medium and wave high and thickness. According to the results of ANSYS numerical analysis, the influence vary curves of different parameters on the loss factor are obtained. The result shows that there is a loss factor peak at 3.2 MPa in the medium pressure and the focused tension/pressure reversely affects the loss factors, meaning that with the increase of ten- sion, the loss factor decreases and with the increase of pressure, the loss factor increases. The wave height and loss factor approximately shows linear relationship. When the wall thickness is 0.8 mm ,the loss factor is the smallest. Fi- nally, the correctness and validity of the finite element model and ANSYS numerical analysis are verified by the exper- imental method.
出处 《工业安全与环保》 2018年第1期65-68,共4页 Industrial Safety and Environmental Protection
基金 河南省基础与前沿技术研究计划重大项目(152300410083) 河南科技大学高级别项目培育基金(2015GJB006)
关键词 波纹管 损耗因子 模态分析 流固耦合 bellows loss factor modal analysis fluid -coupling
  • 相关文献

参考文献6

二级参考文献38

  • 1于亚彬,吴宏煜,陈伟.波纹管振动模态的计算与试验研究[J].振动工程学报,2004,17(z2):747-749. 被引量:7
  • 2林远大.焊接金属波纹管机械密封的设计和典型结构[J].流体工程,1989,17(11):39-43. 被引量:5
  • 3韩淑洁,王心丰.基于ANSYS的U型波纹管的振动模态分析[J].机械,2004,31(10):21-23. 被引量:14
  • 4[美]Finnemore E J,Franzini J B,钱翼稷,周玉文等译.流体力学及其工程应用[M].北京:机械工业出版社,2005.11.
  • 5[美]克拉夫 R,彭津 J.王光远等译.结构动力学(第二版)(修订版)[M].北京:高等教育出版社,2006.
  • 6[美]Anderson J D,吴颂平,刘赵森等译.计算流体力学基础及其应用[M].北京:机械工业出版社,2007.
  • 7Sreejith B, Jayaraj K, Ganesan N, et al. Finite element analysis of fluid-structure interaction in pipeline systems[ J]. Nuclear Engineering and Design, 2004,227 ( 3 ).
  • 8Donea J, Giuliani S, Halleux J P. An arbitrairy Lagrangian Eulerian finite element method for transient dynamic fluid structure interactions. Compter Methods in Applied Mechanics and Engineering , 1982, 33:689-723.
  • 9Khatir Z, Pozarlik A K, Cooper R K, et al. Numerical study of coupled fluid-structure interaction for combustion system [ J ]. International journal for numerical methods in fluids ,2007.
  • 10Paidonssis M P. Fluid-Structure Interactions (Slender Structures and Axial Flow) [ J]. Academic Press. 1998,1.

共引文献65

同被引文献10

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部