摘要
韵律边界标注对于语料库建设和语音合成有着至关重要的作用,而自动韵律标注可以克服人工标注中耗时、不一致的缺点。仿照人工标注流程,该文运用循环神经网络分别对文本和音频两个通道训练子模型,对子模型的输出采用模型融合的方法,从而获得最优标注。以词为单位提取了静音时长,与传统以帧为单位的声学特征相比更具有明确的物理意义,与韵律边界的联系更加紧密。实验结果表明:相比传统声学特征,该文所采用的静音时长特征使自动韵律标注的性能有所提高;相比直接特征层面的方法,决策融合方法更好地结合了声学和文本的特征,进一步提高了标注的性能。
Automatic prosodic boundary labeling is important in the construction of a speech corpus for speech synthesis. Automatic labeling of prosodic boundaries gives more consistent results than manual labeling of prosodic boundaries which is time consuming and inconsistent. Manual labeling method is modelled here using a recurrent neural network to train two sub-models which use lexical features and acoustic features to label the prosodic boundaries. Model fusion is then used to combine the outputs of the two sub-models to obtain the optimal labeling results. The silence durations for each word give clearer physical meanings and better correlations with the prosodic boundaries than the acoustic features used in traditional methods extracted frame-by frame. Tests show that the silence durations extracted using the current acoustic features and the model fusion method improve the prosodic boundary labeling compared with previous feature fusion methods.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第1期61-66,74,共7页
Journal of Tsinghua University(Science and Technology)
基金
国家“八六三”高技术项目(2015AA016305)
国家自然科学基金面上项目(61425017,61403386)
中国科学院战略性先导科技专项(GrantXDB02080006)
中国社会科学基金重大项目(13&ZD189)
关键词
韵律边界标注
决策融合
静音时长
语料库构建
语音合成
prosodic boundary labeling
ensemble strategy
silence duration
corpus construction
speech synthesis