期刊文献+

基于离散余弦变换过完备字典的机织物纹理稀疏表征 被引量:7

Sparse representation of woven fabric texture based on discrete cosine transform over-complete dictionary
下载PDF
导出
摘要 为进一步研究基于字典学习的机织物纹理表征算法的稳定性与可比性,提出用离散余弦变换(DCT)过完备字典稀疏表征算法来重构织物纹理图像。重点探讨了稀疏度、子窗口大小、字典个数对纹理表征效果的影响,利用均方根误差和峰值信噪比指标对机织物原图与重构图像之间的近似程度进行量化,并确定最终优选的稀疏度为10,子窗口大小为8像素×8像素,字典个数为256。实验结果表明,所提方法不仅方便快捷,还可得到较好的表征效果。此外,其DCT过完备字典峰值信噪比值仅次于基于训练的自适应学习字典,且优于主成分分析和非稀疏表征算法约4 d B。 In order to investigate the stationary and comparability of the algorithm for woven fabric texture representation based on dictionary learning, the sparse representation with over-complete discrete cosine transform (DCT) dictionary was used to characterize the woven fabric texture. Firstly, the influence of sparsity on woven fabric texture reconstruction was investigated. Two indexes with root mean square error and peak signal to noise ratio were calculated to quantify the approximation of original image and reconstructed image. And then the final chosen sparsity value is 10, the image patch size is 8 pixel × 8 pixel, and the number of dictionary atom is 256. Experiments demonstrate that the proposed algorithm is quick, has simple calculation and can achieve rather good effect. In addition, the method not only can achieve stable results, but also its peak signal to noise ratio is better about 4 dB than pincipal component analysis and non-sparse representation algorithm on average, which is only inferior to the K singular value decomposition learned dictionary.
出处 《纺织学报》 EI CAS CSCD 北大核心 2018年第1期157-163,共7页 Journal of Textile Research
基金 国家自然科学基金项目(61379011 61501209)
关键词 机织物纹理 离散余弦变换过完备字典 稀疏表征 主成分分析 woven fabric texture discrete cosine transform over-complete dictionary sparse representation pincipal component analysis
  • 相关文献

参考文献6

二级参考文献59

  • 1高晓丁,汪成龙,左贺,梁继超.基于直方图统计的织物疵点识别算法[J].纺织学报,2005,26(2):121-123. 被引量:26
  • 2步红刚,黄秀宝.基于计算机视觉的织物疵点检测的近期进展[J].东华大学学报(自然科学版),2006,32(3):128-133. 被引量:12
  • 3谢文录,谢维信.时间序列中的分形分析和参数提取[J].信号处理,1997,13(2):97-104. 被引量:27
  • 4TheodoridisS,KoutroumbasK.模式识别[M].2版.李晶皎,王爱侠,张广渊,等译.北京:电子工业出版社,2004:107-115.
  • 5MANDELBROT B B.The Fractal Geometry of Nature[M].San Francisco:W H Freeman,1982.
  • 6KUMAR A.Computer-vision-based fabric defect detection:a survey[J].IEEE Transactions on Industrial Electronics,2008,55(1):348-363.
  • 7SARKAR N,CHAUDHURI B B.An efficient differencial box-counting approach to compute fractal dimension of image[J].IEEE Transactions on Systems,Man and Cybernetics,1994,24(1):115-120.
  • 8CONCI A,PROENACA C B.A fractal image analysis system for fabric inspection based on a box-counting method[J].Computer Networks and ISDN Systems,1998,30(20/21):1887-1895.
  • 9KENNETH F.分形几何:数学基础及其应用[M].曾文曲,译.沈阳:东北大学出版社,1991.
  • 10FOROUTAN-POUR K,DUTILLEUL P,SMITH D L.Advances in the implementation of the box-counting method of fractal dimension estimation[J].Applied Mathematics and Computation,1999,105:195-210.

共引文献37

同被引文献25

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部