期刊文献+

无线传感网络数据集离群目标跟踪方法仿真 被引量:3

Simulation of Outlier Tracking for Data Sets in Wireless Sensor Networks
下载PDF
导出
摘要 对传感网络数据集离群目标跟踪,能够有效提高无线传感网络运行安全性。对数据集离群目标的跟踪,需要对目标元素采样分量和观测分量进行匹配,建立元素跟踪模型,完成离群目标跟踪。传统方法先对元素边权值计算,建立元素交叉隶属度矩阵,但忽略了加入数据元素跟踪动量项,导致跟踪精度低。提出基于改进Elman无线传感网络学习算法的无线传感网络数据集离群目标跟踪方法,分析离群目标观测方程,建立观测模型,利用拓扑序列分量,对元素采样分量和观测分量进行匹配,建立元素跟踪模型,引入无线传感网络学习算法加入元素跟踪动量项,对学习率进行调节,完成无线传感网络数据集离群目标跟踪。实验结果表明,所提方法跟踪精度高,运算时间短,高效提高无线传感网络安全性。 ABSTRACT: The outlier target tracking of data set in sensor network can effectively improve the security of wireless sensor network. The traditional method calculated the edge weight of elements, but ignores the addition of momentum term data element tracking, resulting in the low tracking accuracy. Based on improved Elman wireless sensor network learning algorithm, an outlier target tracking method of data set in sensor network is proposed. The outlier target ob- servation equation is analyzed and the observation model is established. Then, by using the topological sequence com- ponent to match element sampling component and observation component, element tracking model is established and the learning algorithm of wireless sensor network is introduced to add elements tracking momentum term. Thus, the learning rate is adjusted to complete the outlier target tracking of wireless sensor network data set. Simulation results show that the proposed method has high tracking accuracy and short computing time; which can effectively improve the security of wireless sensor network.
出处 《计算机仿真》 北大核心 2018年第1期265-268,共4页 Computer Simulation
关键词 无线传感网络 数据集 离群目标 Wireless sensor networks(WSN) Data set Outlier
  • 相关文献

参考文献9

二级参考文献112

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Chung T H,Hollinger G A, Isler V. Search and Pursuit- evasion in Mobile Robotics [ J ]. Autonomous Robots, 2011,31 (4) :299-316.
  • 3Isler V, Kannan S, Khanna S. Randomized Pursuit- evasion in a Polygonal Environment [ J ]. IEEE Transactions on Robotics ,2005,21 ( 5 ) :875-884.
  • 4Chung T H,Burdick J W ,Murray R M. A Decentralized Motion Coordination Strategy for Dynamic Target Track- ing[ C ]//Proceedings of 2006 IEEE International Con- ference on Robotics and Automation. Washington D. C. , USA :IEEE Press,2006:2416-2422.
  • 5Teng J, Snoussi H, Richard C, et al. Distributed Variational Filtering for Simultaneous Sensor Localization and Target Tracking in Wireless Sensor Networks [ J ]. IEEE Transactions on Vehicular Technology, 2012,61 ( 5 ) : 2305 -2318.
  • 6Wang Xingbo, Fu Minyue, Zhang Huanshui. Target Tracking in Wireless Sensor Networks Based on the Combination of KF and MLE Using Distance Measurements [ J ]. IEEE Transactions on Mobile Computing ,2012,11 (4) :567-576.
  • 7Ai W B, Deng H J, Yuan J H. An Efficient Semi Definite Relaxation Method for Energy-based Source Localization in Sensor Networks[J]. Applied Mechanics and Materials ,2013,321 :568-572.
  • 8Meesookho C,Mitra U, Narayanan S. On Energy-based Acoustic Source Localization for Sensor Networks [ J ]. IEEE Transactions on Signal Processing, 2008,56 ( 1 ) : 365 -377.
  • 9Dandach S H, Fidan B, Dasgupta S, et al. Adaptive Source Localization by Mobile Agents[ C ]//Proceedings of the 45th IEEE Conference on Decision and Control. Washington D. C. , USA : IEEE Press, 2006 : 2045-2050.
  • 10Choi J, Oh S, Horowitz R. Distributed Learning and Cooperative Control for Multi-agent Systems [J]. Automatica, 2009,45 ( 12 ) : 2802-2814.

共引文献35

同被引文献25

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部