期刊文献+

二阶椭圆与抛物方程的偏Schauder估计

Partial Schauder estimates for elliptic and parabolic equations of second order
原文传递
导出
摘要 Schauder估计是偏微分方程正则性理论的主要结论之一,它在研究非线性方程解的存在唯一性中起到了非常重要的作用.关于各向异性方程的偏Schauder估计是近年来的研究热点之一,本文旨在介绍几类二阶椭圆和抛物方程的偏Schauder估计及其证明思路.本文还给出了散度型椭圆方程偏Schauder估计的一个新的证明. As a branch of regularity, Schauder estimate plays a very important role in proving existence and uniqueness for the nonlinear elliptic and parabolic equations. In recent years, there are a number of works concerning Schauder estimate of anisotropic equations. In this review, we aim to introduce some results about anisotropic Schauder estimate for elliptic and parabolic equations.
作者 曹毅 李东升
出处 《中国科学:数学》 CSCD 北大核心 2018年第1期15-30,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11671316) 中央高校基本科研业务费(批准号:GK201302002)资助项目
关键词 椭圆方程 抛物方程 偏Schauder估计 Holder估计 elliptic equations, parabolic equations, partial Schauder estimates, Holder estimates
  • 相关文献

参考文献1

二级参考文献19

  • 1Burch, C., The Dini condition and regularity of weak solutions of elliptic equations, J. Differential Equations, 30, 1978, 308- 323.
  • 2Caffarelli, L. A., Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2),130, 1989, 189 -213.
  • 3Caffarelli, L. A., Interior W^2,p estimates for solutions of Monge-Ampère equations, Ann. of Math. (2),131, 1990, 135- 150.
  • 4Caffarelli, L. A. and Cabre, X., Fully Nonlinear Elliptic Equations, Colloquium Pubblications, Vol. 43, A.M. S., Providence, RI, 1995.
  • 5Camnpanato, S., Propriet di una famiglia di spazi funzionali, Ann. Sc. Norm. Super Pisa Cl. Sci. (3), 18,1964, 137-160.
  • 6Evans, L. C., Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math., 25, 1982, 333-363.
  • 7Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, A. M. S., Providence, RI, 1998.
  • 8Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer, 1983.
  • 9Kovats, J., Fully nonlinear elliptic equations and the Dini condition, Comm. Partial Differential Equations,22(11-12), 1997, 1911-1927.
  • 10Krylov, N. V., Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk. SSSR Set.Mat., 46, 1982, 487-523; English translation in Math. USSR Izv., 20, 1983, 459-492.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部