期刊文献+

带边流形上k-Yamabe方程的变分结构

Variational structure of k-Yamabe problem on manifolds with boundary
原文传递
导出
摘要 本文考虑了n维带边流形上的k-Yamabe问题.当2 k≤n/2时,假设方程是具有变分结构的.在之前的文献中,人们都是假设流形是局部共形平坦的.当k=2时,在较弱的假设下,本文可以推广已有的k-Yamabe问题的结论.特别地,本文证明了,当n>4、边界的平均曲率非负、且流形的Yamabe常数比标准半球面的Yamabe常数严格小时,2-Yamabe问题是可解的. This paper considers the k-Yamabe problem on manifolds with boundary. We investigate the problem under the assumption that the k-Yamabe equation has a variational structure instead of that the manifold is locally conformally flat, where 2 ≤ k 〈 n/2, n is the dimension of the manifold. In particular, we show that the 2-Yamabe problem is solvable on the manifold of dimension n 〉 4 with umbilic boundary if its Yamabe constant is smaller than that of the standard half unit sphere and the mean curvature of the boundary is nonnegative.
作者 贺妍 盛为民
出处 《中国科学:数学》 CSCD 北大核心 2018年第1期157-180,共24页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11301547 11571304和11131007) 浙江省自然科学基金(批准号:LY14A010019)资助项目
关键词 k-Yamabe问题 带边流形 全脐边界 变分结构 κ-Yamabe problem, manifolds with boundary, umbilic boundary, variational structure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部