期刊文献+

Lagrange插值和Hermite插值在Orlicz空间内的逼近 被引量:3

Lagrange Interpolation and Hermite Interpolation Approximation in Orlicz Spaces
下载PDF
导出
摘要 在Orlicz空间内研究问题是函数逼近论研究方向里的重要分支之一.插值逼近问题有着深远的理论意义和广泛的应用前景.本文在连续函数空间和L_p空间内研究插值逼近方法的基础上,研究一种Lagrange线性组合插值算子和Hermite插值算子在Orlicz空间内的逼近问题,利用连续模,Holder等式,Hardy-Littlewood极大函数,给出两类插值的逼近度估计,所得的结果更精确于前人的同类结果. For researching in the Orlicz space is an important branch of research in the function approximation theory. It has far-reaching theoretical significance and wide application prospect of interpolation approximation problem. Based on interpolation approximation method in continuous function space and space, this paper studies the approximation problems of a linear combination of Lagrange interpolation algorithm and Hermite interpolation operator in Orlicz space. Two kinds of interpolation is given by using the continuous mode, Holder inequality, Hardy-Littlewood maximal function, estimation of approximation degree. The more accurate the results are obtained from previous similar results.
出处 《应用数学》 CSCD 北大核心 2018年第1期237-242,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(11761055) 内蒙古自治区自然科学基金资助项目(2017MS0123) 内蒙古自治区研究生科研创新资金资助项目(S20161013501)
关键词 ORLICZ空间 LAGRANGE插值 HERMITE插值 Orlicz space Lagrange interpolation Hermite interpolation
  • 相关文献

参考文献7

二级参考文献39

  • 1虞旦盛,周颂平.Mǖntz系统{xλ_n}(λ_n↘0)有理逼近的Jackson型估计[J].浙江大学学报(理学版),2005,32(3):253-255. 被引量:2
  • 2吴嘎日迪.一类新型Kantorovich算子在Orlicz空间内的逼近性质[J].内蒙古师范大学学报(自然科学汉文版),2006,35(3):253-257. 被引量:27
  • 3虞旦盛,周颂平.L_([0,1])~p空间Müntz有理逼近的Jackson型估计[J].Journal of Mathematical Research and Exposition,2007,27(1):1-6. 被引量:2
  • 4吴从忻 王廷辅.奥尔里奇空间及其应用[M].哈尔滨:黑龙江科学技术出版社,1983..
  • 5Wu Garidi.On Approximation by Polynomials in Orlicz Spaces[J].Approximation Theory and its Applications,1991,7(3):97-110.
  • 6Lorentz G G.Bernstein Polynomials[M].Toronto:University of Toronto Press,1953:31-32.
  • 7Ramazanov A R K.On Approximation by Polynomials and Rational Functions in Orlicz Spaces[J].Analysis Mathematica,1984,10(2):117-132.
  • 8Chauham S P S, Srivastava K B. Uniform Convergence and Rapidity of Convergence of Grtlnwald-type Operators on Extended Tchebychev Nodes of Second Kind [J]. Indian J Pure Appl Math, 1978, 9: 1337-1343.
  • 9孙燮华.关于第二类Bernstein型插值过程[J].数学杂志,1983,(3):137-144.
  • 10HE Jia-xing. On the Linear Combination of Grttnwald Polynomial Operator [J]. Applied Math and Comp, 1998, 96:117-126.

共引文献40

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部