期刊文献+

基于节点属性的重叠社区发现算法改进 被引量:1

Modified Overlapping Community Detection Algorithm based on Node Attributes
下载PDF
导出
摘要 复杂网络越来越多地应用到各个领域,而在复杂网络中存在着一定的社区结构,社区发现的目标就是从无标记的网络中发现具有相似功能的节点组合。分析基于社区隶属模型AGM的重叠社区发现算法的特点及机理,讨论节点属性对社区发现的可能影响,通过节点属性来调整节点对社区的隶属情况和节点之间生成边的概率,获得更合理的社区隶属指标和对应的社区划分。真实数据集上的实验表明,改进后的算法能够提高采样效率。 Complex network is increasingly applied to various fields. However, there exists certain community structure in complex network. The goal of community discovery is to find similar nodes with similar functions from the non-mark network. The overlapping community based on the community membership model AGM is analyzed, and the characteristics and mechanisms of the algorithm thus found, and the possible impact of node properties on community discovery also discussed. Through node attribute, the node's membership of the community and the probability of the generated edges of nodes are adjusted to get a more reasonable community membership index and the corresponding community partition. Experiments on real data sets indicate that the Modified algorithm could improve the sampling efficiency.
作者 王梦迪 付顺顺 WANG Meng-di;FU Shun-shun(College of Information Technology and Network Security, People's Public Security University of China, Beijing 100038, China)
出处 《通信技术》 2018年第1期128-133,共6页 Communications Technology
关键词 复杂网络 重叠社区 节点属性 极大似然 MCMC方法 complex network overlapping community node attribute maximal likelihood MCMC method
  • 相关文献

参考文献8

二级参考文献169

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2Clauset A,Moore C,Newrnan M E J. Hierarchical structure and the prediction of missing links in networks [J]. Nature, 2008, 453(7191):98-101.
  • 3Cohn D, Chang H. Learning to probabilistically identify authori- tative documents [C]//Citeseer. 2000:167-174.
  • 4Nallapati R M, Ahmed A, Xing E P, et al. Joint latent topic mo- dels for text and citations [C]///ACM. 2008:542-550.
  • 5Yang T, Chi Y, Zhu S, et al. Directed network community detec- tion: A popularity and productivity link model [C]///SDM.2010 : 742-753.
  • 6Yang T, J in R, Chi Y, et al. Combining link and content for com- munity detection: a discriminative approach [C]//KDD. 2009 : 927-936.
  • 7Yang T, Jin R, Chi Y, et al. A Bayesian framework for communi- ty detection integrating content and link [C]//BUAI. 2009:615- 622.
  • 8Hofmann T. Probabilistic latent semantic indexing [C]//ACM. 1999 : 50-57.
  • 9ZHU Xiao-jin, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions [ C ]//Proc of the 20th International Conference on Machine Learning. 2003:328- 335.
  • 10OLIVIER C, BERNIARD S. Semi-supervised learning [ M ]. Cam- bridge: MIT Press,2006:l-53.

共引文献210

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部