期刊文献+

矩阵的最小多项式的求解及其应用 被引量:3

The Minimal Polynomial of Matrix and It's Applications
下载PDF
导出
摘要 首先介绍最小多项式的相关概念及最小多项式的一些基本性质,然后给出求解最小多项式的几种常用方法,最后结合实例归纳总结最小多项式在解题中的几个应用. In this paper,we introduce some definitions and theorems about minimal polynomial,and then we describe the bas-ic properties of it. Several examples are proposed to illustrate the applications of minimal polynomial.
作者 冯福存 FENG Fucun(School of Mathematics and Computer Science,Ningxia Normal University,Guyuan Ningxia 75600)
出处 《宁夏师范学院学报》 2017年第6期28-32,共5页 Journal of Ningxia Normal University
基金 宁夏自治区级"十三五"规划重点建设专业子项目(数学与应用数学专业学科基础课程教学团队) 宁夏师范学院研究项目(NXSFZD1712 NXSFZD1711)
关键词 最小多项式 特征多项式 应用 Minimal polynomial Characteristic polynomial Appl ications
  • 相关文献

参考文献4

二级参考文献36

  • 1张志旭,曹重光,张玲,朱海成.矩阵标准形的思想及应用[J].佳木斯大学学报(自然科学版),2006,24(4):592-593. 被引量:4
  • 2史荣昌.矩阵分析[M].北京:北京理工大学出版社,1998..
  • 3Hom R A. And Johnson C R. Matrix Analysis,Cambridge University Press, 1985.
  • 4N. J. Pullman, Matrix Theory and its Applications, Marcel Dekker. Inc, Printed in United States of America, 1978.
  • 5DOff R C, Modern Control Systems, Addison Wesley Publishing Co., Inc., 1991.
  • 6Faddeev D K and Faddeeva V N, Computational Methods of Linear Algebra, Freeman, San Francisco, 1963.
  • 7Cohen H, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.
  • 8Helmberg G, Wagner P, and Veltkamp G, On Faddeev-Leverrier's method for the computation of the characteristic polynomial of a matrix and of eigenvectors, Linear Alg.Appl., 1993, 185: 219-223.
  • 9Pan V, Computing the determinant and the the characteristic polynomial of a matrix via solving linear systems of equations, Inform.Process.Lett., 1988, 28: 71-75.
  • 10Rombouts S and Heyde K, An accurate and efficient algorithm for the characteristic polynomial of a general square matrix, J.Comput.Phys., 1998, 140: 453-458.

共引文献11

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部