摘要
再生核方法求解初边值问题的关键是构造再生核,使其满足所考虑问题的齐次边界条件.在此我们通过两种再生核方法求解线性常微分方程的初边值问题.一种方法是将齐次边界条件放入再生核中;另一种方法是将所有初边值条件都放入算子里.本文重点在于比较这两种方法求解微分方程数值解的精确性,通过几个数值算例我们发现,方法Ⅰ的精确度更高,所有数值计算都是通过数学软件mathematic8.0给出.
A key of the reproducing kernel method for initial boundary value problems is the construction of the reproducing kernel and satisfying the homogenous boundary conditions of the considered problems.So we solve linear differential equations with initial boundary value problems by two reproducing kernel methods.One method is put the homogeneous boundary conditions in the reproducing kernel;the other way is put all boundary value conditions into the operator.This paper focuses on comparing the accuracy of the two methods for solving numerical solutions of differential equations.Through several numerical examples,we find that the accuracy of method I is higher,and all numerical calculations are given by the mathematical software mathematic8.0.
出处
《内蒙古工业大学学报(自然科学版)》
2017年第5期324-330,共7页
Journal of Inner Mongolia University of Technology:Natural Science Edition
基金
国家自然科学基金项目(11361037)
内蒙古自然科学基金项目(2017MS0103
2015MS0118)
内蒙古工业大学研究生数值分析课程项目(KC2014001)
关键词
再生核空间
再生核方法
初边值
数值解
线性常微分方程
Reproducing kernel space
Reproducing kernel method
Initial boundary value
Numerical solution
Linear ordinary differential equation