期刊文献+

基于Workbench的缩套式超高压缸体优化设计 被引量:3

Optimum Design Based on Workbench for Shrink Sleeve Type Ultrahigh Pressure Cylinder
下载PDF
导出
摘要 某设备的缩套式超高压缸体存在内壁始终为应力最大位置,且缸体应力分布相当不均匀的问题。为满足缸体最大等效应力小于缸体材料的屈服极限,以内外缸体内壁剪应力相等为约束条件,结合过盈配合及设计要求,利用响应面法对缩套式超高压缸体进行优化设计。结果表明,缸体的过盈量从优化前的0.30 mm减小到优化后的0.2662 mm,降低了内外缸安装套合时的工作难度;内缸内壁到外缸内壁的等效应力的变化率从优化前的0.787 MPa/mm降为0.0568 MPa/mm,缸体的应力分布不均匀性较优化前有了较大的改观。 The internal wall of tlie sleeve type ultrahigh pressure cylinder of a certain gest stress position, and the cylinder stress distribution is quite uneven. Under tlie conditions quivalent stress of cylinder is less than the yield limit of cylinder material and the shear stresses of internal walls ofinner and outer cylinders are equal, combining wit!i the interference fit and the design requirements, we use the re-sponse surface met!iod to optimize the design. The results show that the interference of cylinder decreases from 0. 30 mm before optimization to 0. 2662 mm after optimization, which reduces the dificulty cylinders. The change rate of t!ie equivalent stress from the inner wall of inner tubder is reduced from 0. 787 MPa/mm to 0. 0568 MPa/mm after optimization, and the stress distrilDution heterogeneity of cylinder is greatly improved compared wit!i that before optimization. The study can provide a reference for the op-timal design and the improvement of t!ie stress distrilDution of sleeve type ultrahigh pressure cylinder.
出处 《液压与气动》 北大核心 2018年第2期14-19,共6页 Chinese Hydraulics & Pneumatics
基金 国家自然科学基金(11602228)
关键词 缩套式超高压缸体 WORKBENCH 应力分析 优化设计 shrink sleeve type ultrahigh pressure cylinder, Worl^bench, stress analysis, optimized design
  • 相关文献

参考文献6

二级参考文献32

  • 1李玉成,孙路,滕斌.波浪对外壁开孔双圆筒结构的作用[J].中国造船,2002,43(z1):322-329. 被引量:7
  • 2卢玲玲,胡儒卓,曾超.高压容器管的开发与生产实践[J].天津冶金,2004(5):16-18. 被引量:4
  • 3王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 4张于贤,王红.关于材料屈服强度的实验研究[J].材料工程,2005,33(11):43-45. 被引量:14
  • 5Muhlhans H B, Aifantis E C. A variational principle for gradient plasticity [ J]. International Journal of Solids and Structure, 1991,28(7) : 845-857.
  • 6Assempour A, Safikhani A R, Hashemi R. An improved strain gradient approach for determination of deformation localization and forming limit diagrams[J].Journal of Materials Processing Technology, 2008, DOI: 10. 1016/j, jmatprotec. 2008.04.030.
  • 7Zhu H X, Karihaloo B L. Size-dependent bending of thin metallic films[J]. International Journal of Plasticity, 2008,24(6) : 991-1007.
  • 8Tsagralds I, Aifantis E C. Strain gradient and wavelet interpretation of size effects in yield and strength[J]. Mechanics of Materials ,2003,35(8 ) : 733-745.
  • 9Aifantis E C. Update on a class of gradient theories[ J ]. Mechanics of Materials, 2003,35 (3) : 259- 280.
  • 10Jiang G L. Nonlinear finite element formulation of kinematic limit analysis [J].International Journal for Numerical Methods in Engineering, 1995,38(16) :2775-2807.

共引文献17

同被引文献23

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部