期刊文献+

基于全卷积神经网络的人群计数 被引量:2

Crowd counting based on fully convolutional neural network
下载PDF
导出
摘要 基于从一张含有任意人群密度和任意视角的图像中准确地估计出其中的人群数目的目的,采用了全卷积神经网络先从图像中获得其人群密度图,然后对人群密度图上每个位置进行求和操作得到最终的人群数目的方法。所采用的全卷积神经网络不受输入图像的分辨率和视角的影响,同时,通过增加池化层层数,扩大网络的感受野,适应了图像中人头比较大的情况。所提出的算法在UCF_CC_50标准数据集上取得了最好的效果,进而验证了算法的高准确率和有效性。 In this paper,based on the purpose of accurately estimating the number of people from an image containing arbitrary crowd density and arbitrary perspective,the fully convolutional neural network(FCN)is used to obtain the crowd density map from the image,and then the values in the each position of the density map are summed to the final crowd count. The fully convolutional neural network is not affected by the resolution and perspective of the input image. In addition,by increasing the number of pooling layer,the receptive field of network is enlarged,which adapts to the large person head in the image. The proposed algorithm achieves the best performance on the UCF_CC_50 benchmark,which verifies its high accuracy and effectiveness.
作者 陈思秦
出处 《电子设计工程》 2018年第2期75-79,共5页 Electronic Design Engineering
关键词 人群计数 人群密度 全卷积神经网络 UCF_CC_50 crowd counting crowd density FCN UCF_CC_50
  • 相关文献

参考文献7

二级参考文献88

  • 1Zhao T, Nevatia. Tracking multiple humans in crowded environment[C]//CVPR, 2004:406-413.
  • 2Rabaud V,Bclongie S. Counting Crowded Moving Objects[C] //C V PR, 2006:705 -711.
  • 3Gabriel J B,Roberto C. Unsupervised bayesian detection of independent motion in crowds[C]//CVPR,2006:594-601.
  • 4Chan A B,Vasconcelos N. Counting people with low-level features and bayesian regression[J]. IEEE Transactions on hnage Processing, April 2012:2160-2177.
  • 5Tomasi C,Kanade T. Detection and tracking of point features [R]. TechnicalReport CMU-CS-91-132. Carnegie Mellon University, 1991.
  • 6Bradski G. Opencv: Examples of use and new applications in stereo,recognition and tracking [C]//Proceedings of the International Conference on Vision Interface, 2002:347.
  • 7Yu S ST Chen X P,Sun W P, et al. A robust method fordetecting and counting people [C] //Proceedings ofInternational Conference on Audio, Language and Image. LosAlamitos: IEEE Computer Society Press,2008: 1545-1549.
  • 8Chan A B, Liang Z S J, Vasconcelos N. Privacy preservingcrowd monitoring: counting people without people models ortracking [C] //Proceedings of IEEE Conference on ComputerVision and Pattern Recognition. Los Alamitos : IEEEComputer Society Press, 2008: 1-7.
  • 9Ge W N, Collins R T. Marked point processes for crowdcounting [C] //Proceedings of IEEE Conference on ComputerVision and Pattern Recognition. Los Alamitos: IEEEComputer Society Press,2009 : 2913-2920.
  • 10Kong D,Gray D,Hai T. A viewpoint invariant approach forcrowd counting [C] //Proceedings of the 18th InternationalConference on Pattern Recognition. Los Alamitos: IEEEComputer Society Press, 2006 : 1187-1190.

共引文献77

同被引文献21

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部