摘要
图G的线性2-荫度la_2(G)是指可以使G分解为k个边不相交森林的最小整数k,其中森林的每个分支是长度至多为2的路。证明了若G是4-圈不共点的平面图,则la_2(G)≤「Δ/2■+5。
The linear 2-arboricity la2(G) of G is the least integer k to divide G into k edge-disjoint forests,and each branch of the forests is a path with the length at most 2. We prove that if G is a planar graph with 4-cycles without common vertex,then la2(G) ≤Δ/2 + 5.
作者
陈宏宇
张丽
CHEN Hong-yu;ZHANG Li(School of Science, Shanghai Institute of Technology, Shanghai 201418, China;School of Statistics and Mathematics, Shanghai Lixin University of Accouting and Finance, Shanghai 201209, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第12期36-41,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金青年科学基金资助项目(11401386)
关键词
平面图
线性2-荫度
圈
planar graph
linear 2-arboricity
cycle