期刊文献+

三角代数上Lie积为平方零元的非线性Jordan可导映射 被引量:3

Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements
原文传递
导出
摘要 设U=Tri(A,M,B)是特征不为2的三角代数,Q={u∈U:u2=0}且φ:U→U是一个映射(无可加或线性假设)。证明了如果对任意a,b∈U且[a,b]∈Q,有φ(a○b)=φ(a)○b+a○φ(b),则φ是一个可加导子,其中[a,b]=ab-ba为Lie积,a○b=ab+ba为Jordan积。 Let U = Tri(A,M,B) be a 2-torsion free triangular algebra,and Q = { u∈U: u^2= 0}. We prove that if a map φ:U→U satisfies φ(a○b) = φ(a)○b + a○φ(b) for any a,b∈U with [a,b]∈Q,then φ is an additive derivation,w here [a,b]= ab-ba is the Lie product and a○b = ab + ba is the Jordan product.
作者 武鹂 张建华 WU Li;ZHANG Jian-hua(School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第12期42-47,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11471199)
关键词 三角代数 Jordan可导映射 平方零元 triangular algebra Jordan derivable map square zero element
  • 相关文献

参考文献2

二级参考文献28

  • 1Christensen E. Derivations of nest algebras [J]. Math Ann, 1977, 229:155- 161.
  • 2Crist R L. Local derivations on operator algebras [J]. J Funct Anal, 1996, 135:76-92.
  • 3Herstein I N. Jordan derivation on prime rings [J]. Proc Amer Math Soc, 1957, 8:1104- 1110.
  • 4Jing Wu, Lu Shijie, Li Pengtong. Characterization of derivation on some operator algebras [J]. Bull Austral Math Soc, 2001, 353:313 315.
  • 5Zhu Jun, Xiong Changping. Generalized derivable mappings at zero point on nest algebras [J]. Acta Math Sinica, 2002, 45:783- 788.
  • 6Hou Jinchuan, Jiao Meiyan. Additive derivable maps at zero point on nest algebras, preprint.
  • 7Hou Jinchuan, Qi Xiaofei. Derivable maps at some points on JSL algebras [J]. Lin Alg Appl, 2008, 429:1851-1863.
  • 8An Runling, Hou Jinchuan. Characterizations of derivations on triangular rings: addi- tive maps derivable at idempotents [J]. Lin Alg Appl, 2009, 431:1070-1080.
  • 9Zhu Jun, Xiong Changping, Zhang Rui. All derivable points in the algebra of all upper triangular matrices [J]. Lin Alg Appl, 2008, 429:804 -818.
  • 10Zhu Jun, Xiong Changping, Zhang Ling. All derivable points in matrix algebras [J]. Lin Alg Appl, 2009, 430:2070 -2079.

共引文献7

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部