摘要
令(X,d,μ)是Hytnen给出的满足几何双倍与上有界双倍的度量测度空间.本文主要目的是去证明Marcinkiewicz积分的交换子从LlogL(μ)到L^(1,∞)(μ)及H_(atb)^(1,∞)(μ)到L^(1,∞)(μ)的有界性.
Let (X, d, μ) be a metric measure space satisfying both the geometrically dou- bling and the upper doubling conditions in the sense of Hyt5nen. The aim of this paper is to establish the boundedness of the commutators of the Marcinkiewicz integrals, from L log L(μ) to L^1,∞(μ) and form Hatb^1,∞(μ)to L^1,∞(μ) respectively.
出处
《数学进展》
CSCD
北大核心
2018年第1期81-94,共14页
Advances in Mathematics(China)
基金
supported by NSFC(No.11261055)