摘要
考虑强凸有界区域上的p-阶特征函数,本文给出了它对一类Monge-Ampère方程解的渐近展开式,另一方面考虑由p-阶特征函数定义的一个黎曼度量,证明了它的截面曲率在边界上趋于-1,且它的曲率张量及各阶共变微分的范数是有界的.
Considering the p-th characteristic function on a strongly convex bounded domain Ω, we give its asymptotic expansion with respect to the solution of Monge-Ampère equation. On the other hand, considering a Riemannian metric defined by the p-th characteristic function, we show that its sectional curvatures tend to -1 on the boundary δΩ, and the norms of its curvature tensors and of all their covariant derivatives are bounded.
出处
《数学进展》
CSCD
北大核心
2018年第1期95-108,共14页
Advances in Mathematics(China)
基金
supported by NSFC(No.11301231)
关键词
截面曲率
有界几何
渐近展开
sectional curvature
bounded geometry
asymptotic expansion