期刊文献+

氧化石墨烯掺杂反渗透混合基质膜制备及性能 被引量:4

Preparation and performance of graphene oxide doped reverse osmosis mixed matrix membrane
下载PDF
导出
摘要 由于芳香族聚酰胺反渗透膜在抗污染性以及耐氯性方面存在不足,限制了其在海水淡化等方面的应用。采用往油相中添加氧化石墨烯(GO)的二次界面聚合法改性了商业反渗透膜,评价了GO掺杂反渗透混合基质膜的分离性能和耐氯性能,并用接触角仪、Zeta电位仪、扫描电镜和原子力显微镜等仪器表征了膜的亲水性能、荷电性能以及膜表面形貌。结果表明,GO的添加提高了膜的分离性能、耐氯性能和亲水性能;当GO添加量为30 mg·L-1时,膜的通量为(77.7±0.9)L·m-2·h-1,膜的截留率为97.6%±0.5%,相比商业膜分别提高了38.4%和4.5%。当氯化强度低于4800 mg·L-1·h时,膜的水通量和盐截留率变化不明显。 The aromatic polyamide reverse osmosis membrane is poor in anti-fouling performance and chlorine resistance, which is limiting its application in some fields. The commercial reverse osmosis membrane was modified by the secondary interface polymerization method of adding graphene oxide (GO) to the oil phase. The separation performance and chlorine resistance of GO-doped reverse osmosis mixed matrix membranes were evaluated. The properties of the membranes were characterized by water contact angle, Zeta potential, scanning electron microscopy (SEM) and atomic force microscopy(AFM). The results show that the addition of GO increases the hydrophilicity, separation performance and chlorine resistance of the membrane. With 30 mg·L-1GO content, the flux and rejection rate of the membrane reach peak values of (77.7±0.9)L·m-2·h-1 and 97.6%+ 0.5%, increasing 38.4% and 4.5% respectively. When the chlorination intensity is less than 4800 mg·L-1·h, the changes of water flux and salt rejection rate of the membrane are not obvious.
出处 《化工学报》 EI CAS CSCD 北大核心 2018年第1期429-434,共6页 CIESC Journal
基金 国家重点研发计划项目(2016YFC0401508) 国家重点基础研究发展计划项目(2015CB655303)~~
关键词 反渗透 氧化石墨烯 二次界面聚合 分离 reverse osmosis graphene oxide secondary interface polymerization membrane separation
  • 相关文献

参考文献9

二级参考文献309

  • 1周勇,俞三传,高从堦.反渗透复合膜(Ⅰ)结构与性能[J].化工学报,2006,57(6):1370-1373. 被引量:17
  • 2吴宗策,蔡志奇,赵小阳,等.低污染复合反渗透膜:中国,CN200610200816.4[P].2008-02-27.
  • 3Cadotte J E, King R S. Interfacial syntheses in the preparation of reverse osmosis membrane [J]. J. Macromol. Scrchem., 1981, A15 (5): 727-755.
  • 4Petersen R J. Composite reverse osmosis and nanofiltration membranes[J]. J. Membr. Sci., 1993, 83:81-150.
  • 5Clarotti C, Sehue F, Sledz J. Plasma deposition of thin fluorocarbon films for increased membrane hemocompatibility [J]. J. Membr. Sci. , 1991, 61:289-301.
  • 6Zhou Y, Yu S C, Liu M H. Effect of mixed crosslinking agents on performance of thin-film-composite membranes [J]. Desalination, 2006, 192:182-189.
  • 7Liu L P, Yu S C, Zhou Y. Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD) ( I ): Preparation and characterization of ICIC-MPD membrane [J]. J. Mernbr. Sci., 2006, 281:88-94.
  • 8Dimov A, Islam M A. Hydrophilization of polyethylenemembranes [J]. J. Membr. Sci. , 1990, 50:97-100.
  • 9Sano T, Shimomura T, Murase I. Process for improving semipermeable membranes by treating with protic acids or inorganic salts [P]. US, 4268662. 1981.
  • 10Shimomura T, Hirakawa M, Murase I. Preparation of polyaerylonitrile reverse osmosis membrane by plasma treatment [J]. J. Appl. Polym. Sci. , 1984, 38:173-183.

共引文献136

同被引文献35

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部