期刊文献+

半传递重图的限制性边连通度(英文) 被引量:4

On Restricted Edge-connectivity of Half-transitive Multigraphs
下载PDF
导出
摘要 设G=(V,E)是一个重图(包含重边,但不含环).图G的边连通度,记为λ(G),是G的最小边割的基数.我们称G是极大边连通的如果λ(G)=δ(G);称图G是超边连通的如果每个最小边割都是某个点的邻边集合.图G的限制性边连通度,记为λ(G),是图G的最小限制性边割的基数.如果λ(G)达到限制性边连通度的上界,我们称G是λ-最优的.一个二部重图是半传递的如果它作用在每个部分上都是传递的.在本文中,我们将刻画极大边连通的、超边连通的、λ-最优的半传递重图. Let G =(V, E) be a multigraph(it has multiple edges, but no loops). The edge connectivity, denoted byλ(G), is the cardinality of a minimum edge-cut of G. We call G maximally edge-connected if λ(G) = δ(G), and G super edge-connected if every minimum edge-cut is a set of edges incident with some vertex. The restricted edge-connectivityλ(G) of G is the minimum number of edges whose removal disconnects G into non-trivial components. If λ(G) achieves the upper bound of restricted edge-connectivity, then G is said to be λ-optimal. A bipartite multigraph is said to be half-transitive if its automorphism group is transitive on the sets of its bipartition. In this paper, we will characterize maximally edge-connected half-transitive multigraphs, super edge-connected half-transitive multigraphs, and λ-optimal half-transitive multigraphs.
出处 《新疆大学学报(自然科学版)》 CAS 2018年第1期34-41,共8页 Journal of Xinjiang University(Natural Science Edition)
基金 supported by NSFC(11401510,11531011,11661077) NSFXJ(2015KL019)
关键词 重图 半传递重图 极大边连通的 超边连通的 限制性边连通度 multigraphs half-transitive multigraphs maximally edge-connected super edge-connected restricted edge-connectivity
  • 相关文献

参考文献1

二级参考文献9

  • 1Wang M, Li Q. Conditional edge connectivity properties, reliability comparison and transitivity of graphs[J]. Discr Math, 2002,258: 205-214.
  • 2Bauer D, Boesch F, Suffel C, Van Slyke R. On the validity of a reduction of reliable network design to a graph extremal probel[J]. IEEE Tran. Circuits and Systems, 1989,34:1579-1581.
  • 3Bondy J A, Murty U S R. Graph theory and its application[M]. Academic Press, North Holland London:The Macmillon Press Ltd, 1976.
  • 4Bonsma P, Ueffing N,Volkmann L. Edge-cuts leaving components of order at least three[J]. Discr Math 2002,256:431-439.
  • 5Esfahanian A, Hakimi S. On computing a conditional edge connectivity of a graph[J]. Inform. Process. Lett 1988,27 :195-199.
  • 6Fabrega J,Foil M A. On the extraconnectivity of graphs[J]. Discr Math, 1996,155:49-57.
  • 7Harary F. Conditional connectivity[J]. Networks,1983,13: 347-357.
  • 8Meng J X,Ji Y H. On a kind of restricted edge connectivity of graphs[J]. Discr Math, 2002,117:183-193.
  • 9Tindell R. Connectivity of cayley graphs[A]. In: Combinatori al Network Theory (D. Z. Du and D. F. Hsueds. ) 1996.41-64.

共引文献1

同被引文献6

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部