摘要
设G=(V,E)是一个重图(包含重边,但不含环).图G的边连通度,记为λ(G),是G的最小边割的基数.我们称G是极大边连通的如果λ(G)=δ(G);称图G是超边连通的如果每个最小边割都是某个点的邻边集合.图G的限制性边连通度,记为λ(G),是图G的最小限制性边割的基数.如果λ(G)达到限制性边连通度的上界,我们称G是λ-最优的.一个二部重图是半传递的如果它作用在每个部分上都是传递的.在本文中,我们将刻画极大边连通的、超边连通的、λ-最优的半传递重图.
Let G =(V, E) be a multigraph(it has multiple edges, but no loops). The edge connectivity, denoted byλ(G), is the cardinality of a minimum edge-cut of G. We call G maximally edge-connected if λ(G) = δ(G), and G super edge-connected if every minimum edge-cut is a set of edges incident with some vertex. The restricted edge-connectivityλ(G) of G is the minimum number of edges whose removal disconnects G into non-trivial components. If λ(G) achieves the upper bound of restricted edge-connectivity, then G is said to be λ-optimal. A bipartite multigraph is said to be half-transitive if its automorphism group is transitive on the sets of its bipartition. In this paper, we will characterize maximally edge-connected half-transitive multigraphs, super edge-connected half-transitive multigraphs, and λ-optimal half-transitive multigraphs.
出处
《新疆大学学报(自然科学版)》
CAS
2018年第1期34-41,共8页
Journal of Xinjiang University(Natural Science Edition)
基金
supported by NSFC(11401510,11531011,11661077)
NSFXJ(2015KL019)
关键词
重图
半传递重图
极大边连通的
超边连通的
限制性边连通度
multigraphs
half-transitive multigraphs
maximally edge-connected
super edge-connected
restricted edge-connectivity