期刊文献+

基于态度的公交出行信息使用市场细分 被引量:3

Use of public transit information market segmentation based onattitudinal factors
下载PDF
导出
摘要 为识别不同出行者对公交出行信息使用选择偏好的差异,对基于态度的公交出行信息使用市场进行了细分。根据在南京市调查的数据,利用因子分析确定态度潜变量,采用结构方程模型分析了态度变量间的相关性,使用K-means聚类方法对公交出行信息使用的市场进行细分。以出行意愿、可靠性、方便性和主观感知等4个变量作为聚类变量,将公交出行信息使用市场细分为5个子市场,同一子市场内出行者公交出行意愿选择近似,不同子市场间出行者选择意愿明显不同。分析了每个子市场态度的差异和公交出行方式选择特征,针对不同子市场的出行者提出了相应的公交出行信息改善策略。 To identify travelers with different preferences on using public transit information, the market segmentation was conducted using attitudinal factors. Based on survey data of Nanjing, first the attitude latent variables were determined by factor analysis, and the relationships among the attitude latent variables were analyzed by structural equation modeling. Then, the K-means clustering method was employed to segment the travelers' use of public transit information. Four variables including willingness to use public transit, reliability of public transit information, accessibility of public transit information, and perception toward public transit information were selected as clustering variables to segment the use of public transit information market into five sub-markets. Travelers in the same sub-market have similar travel preferences, while those in different sub-markets have distinct preferences. Differences of the attitudinal factors and characteristics of public transit travel choices in each sub-market were examined, and the policies that serve different sub-markets were proposed to improve public transit information service.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第1期98-104,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金重点项目(51338003) "973"国家重点基础研究发展计划项目(2012CB725402)
关键词 交通运输系统工程 市场细分 K-MEANS聚类 公交出行信息 结构方程模型 engineering of communications and transportation system market segmentation K-means clustering public transit information structural equation modeling
  • 相关文献

参考文献1

二级参考文献13

  • 1侯杰泰,温忠麟,成子娟著,结构方程模型及应用[M]北京:教育科学出版社.2004
  • 2PAEZ A. Exploring contextual variations in land use and transport analysis using a probit model with geographical weights[J]. Journal of Transport Geography, 2006, 14(3), 167-176.
  • 3XING Y, HANDY S L, MOKHTARIAN P L. Factors associated with proportions and miles of bicycling for transportation and recreation in six small US cities[J].Transportation Research Part D: Transport and Environment, 2010, 15(2):73-81.
  • 4GRISCHKAT S, HUNECKE M, BOHLER S, et al.Potential for the reduction of greenhouse gas emissions through the use of mobility services[J]. Transport Policy,2014(35): 295-303.
  • 5ANABLE J. Complacent car addicts or aspiring environmentalists? Identifying travel behavior segments using attitude theory[J]. Transport Policy, 2005, 12(1):65-78.
  • 6LI Z B, WANG W, YANG C, et al. Bicycle commuting market analysis using attitudinal market segmentation approach[J]. Transportation Research Part A: Policy and Practice, 2013(47): 56-68.
  • 7GARDNER B, ABRAHAM C. What drives car use? A grounded theory analysis of commuters’reasons for driving[J]. Transportation Research Part F: Traffic Psychology and Behavior, 2007, 10(3):187-200.
  • 8SHIFTAN Y, OUTWATER M L, ZHOU Y S. Transit market research using structural equation modeling and attitudinal market segmentation[J]. Transport Policy,2008, 15(3):186-195.
  • 9莫泰基. 香港贫困与社会保障[M]. 中国,香港:中华书局,1993.
  • 10JOHANSSON M V, HELDT T, JOHANSSON P. The effects of attitudes and personality traits on mode choice[J]. Transportation Research Part A: Policy and Practice, 2006(40): 507-525.

共引文献3

同被引文献32

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部