期刊文献+

面向服务推荐的QoS成列协同排序算法 被引量:3

QoS-aware listwise collaborative ranking algorithm for service recommendation
下载PDF
导出
摘要 针对传统基于服务质量(QoS)预测的推荐方法较少考虑服务间的排序对产生推荐列表的影响,不能准确体现用户偏好的问题。本文提出了一种基于QoS排序学习的服务推荐算法,选用计算复杂度较低的成列损失函数来优化矩阵因式分解模型,并通过挖掘用户间的近邻信息来进一步提高QoS排序的准确性。在真实数据集上的大量实验表明,该算法具有良好的性能。 With the increasing number of candidate services that meet the same function on the Internet, service selection becomes more and more difficult, and service recommendation becomes the key issue that needs to be solved urgently. However, the traditional service QoS prediction based recommendation method pays less attention to the role of the service ranking to the recommendation list, which can not accurately reflect the user preference. To solve the above problems, this paper proposes a QoS ranking learning based service recommendation algorithm. It selects low computational complexity listwise loss function to optimize the matrix factorization model, and further improves the accuracy of QoS ranking by mining the neighbor information between users. Experiments on real datasets show that the proposed algorithm has good performance.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第1期274-280,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(41274076)
关键词 计算机应用 服务推荐 协同过滤 排序学习 矩阵因式分解 computer application service recommendation collaborative filtering learning to rank matrix factorization
  • 相关文献

参考文献4

二级参考文献46

  • 1胡春明,怀进鹏,孙海龙.基于Web服务的网格体系结构及其支撑环境研究[J].软件学报,2004,15(7):1064-1073. 被引量:84
  • 2杨胜文,史美林.一种支持QoS约束的Web服务发现模型[J].计算机学报,2005,28(4):589-594. 被引量:131
  • 3DUSTDAR S, SCHREINER W, SCHREINER W. Asurvey on Web services composition [J]. International Journal of Web and Grid Services, 2005, 1(1) : 1 - 30.
  • 4BILGIN A S, SINGH M P. A DAML-based repository for QoS-aware semantic Web service selection [C] // Proceedings of IEEE International Conference on Web Services. San Diego: IEEE, 2005: 368-375.
  • 5SHAO LS, ZHANG J, WEI Y. Personalized QoS pre- diction for web services via collaborative filtering [C] // Proceedings of IEEE International Conference on Web Services. Salt Lake City: IEEE, 2007:439-446.
  • 6CHEN X, LIU XD, HUANG ZC. RegionKNN.. A scalable hybrid collaborative filtering algorithm for per- sonalized web service recommendation [C] // Proceed- ings of IEEE International Conference on Web Services. Miami: IEEE, 2010, 9- 16.
  • 7ZHENG ZB, MA H. WSRec: A collaborative filtering based Web service recommender system [C] // Proceed- ings of IEEE International Conference on Web Services. Los Angeles: IEEE , 2009, 437-444.
  • 8ZHENG ZB, MA H. QoS-aware web service recom- mendation by collaborative filtering [J]. IEEE Transac- tions on Services Computing, 2011, 4(2) : 140 - 152.
  • 9LO W, YIN JW, DENG SG, et al. Collaborative web service QoS prediction with location-based regularization [C] // Proceedings of IEEE International Conference on Web Services. Honolulu: IEEE, 2012:464-471.
  • 10ZHENG ZB, MA H. , LYU M R, KING I. Collabora- tive web service QoS prediction via neighborhood inte- grated matrix factorization [J]. IEEE Transactions on Services Computing, 2013, 6(3): 289-299.

共引文献158

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部