期刊文献+

Improving CLM4.5 Simulations of Land–Atmosphere Exchange during Freeze–Thaw Processes on the Tibetan Plateau 被引量:14

Improving CLM4.5 Simulations of Land–Atmosphere Exchange during Freeze–Thaw Processes on the Tibetan Plateau
原文传递
导出
摘要 Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and mois- ture transport. Therefore, soil has an important effect on lanatmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Com- munity Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze-thaw periods, soil temperature, soil moisture, and surface energy during freeze-thaw processes, was validated. The results indicated that: (1) the new parameterization performed bet- ter in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil li- quid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization. Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and mois- ture transport. Therefore, soil has an important effect on lanatmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Com- munity Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze-thaw periods, soil temperature, soil moisture, and surface energy during freeze-thaw processes, was validated. The results indicated that: (1) the new parameterization performed bet- ter in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil li- quid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization.
出处 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期916-930,共15页 气象学报(英文版)
基金 Supported by the National Natural Science Foundation of China(91537104,41375077,91537106,and 91537214)
关键词 land surface model freeze-thaw processes gravel and organic matter Tibetan Plateau land surface model, freeze-thaw processes, gravel and organic matter, Tibetan Plateau
  • 相关文献

参考文献9

二级参考文献119

共引文献183

同被引文献243

引证文献14

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部