期刊文献+

水基纳米聚硅在低渗油藏中的降压增注研究 被引量:14

Depressurizing and Injection-augmenting Behavior of Water-based Silica Nanoparticle in Low-permeability Reservoir
下载PDF
导出
摘要 纳米聚硅降压增注剂分散在介质中多以聚集态存在,难以进入细小孔道,甚至导致孔道堵塞。本文将一种采用原位表面修饰技术制备的水基纳米聚硅降压增注剂在分散剂作用下分散在水中,利用透射电子显微镜、激光粒度分布仪等分析手段对水基纳米聚硅进行了结构表征,研究了纳米聚硅分散液的相分散、相分离及其砂岩表面的吸附行为,并通过现场试验考察了纳米聚硅分散液的降压增注能力。结果表明:具有强吸附-超疏水核结构的水基纳米聚硅以0.2%的质量分数分散于水中,透光率大于99%,平均粒径为7 nm,Zeta电位达-43.1 mV,分散稳定。同时,分散液在高矿化度及低pH值条件下可实现强吸附-超疏水性核的有效分离,并牢固吸附在岩石孔隙表面,从而改变岩石表面润湿性,形成疏水性孔隙表面。在低渗透油田注水井现场应用时,江苏油田应用7口井平均注水压力下降26.4%,注水量增加106.7%,有效期大于10个月。 The silica nanoparticles used as depressurizing and injection-augmenting agent was mostly dispersed in the medium with aggregate structure,which resulted in it was difficult to be injected into the small pores and even leaded to blockage of the pores. In this paper,a kind of water-based nano-silica with in-situ surface modification was dispersed in water with the action of dispersant, and was characterized by transmission electron microscopy and dynamic light scattering. Their phase dispersion and separation behavior as well as adsorption measurement were studied. Meanwhile,the depressurizing and injection-augmenting ability of the silica nanoparticles dispersion was investigated through field tests. The results indicated that the as-prepared water-based silica nanoparticles exhibited super hydrophobicity and was able to disperse in water as monodisperse particle with a grain size of about 7 nm, as a result,the transmittance of the silica nanoparticles dispersion was greater than 99% and the Zeta potential was -43.1 mV. Besides,the as-prepared super-hydrophobic nano-silica could be well separated from the dispersion system and adsorbed on porous core of wells,which could make the hydrophilicity of the cores transform into hydrophobicity. The as-prepared water-based silica nanoparticle as a depressurizing and injection-augmenting agent could reduce the pressure and increase the injection rate of the reservoir by 26.4% and 106.7%,respectively,and the period of validity was more than 10 months.
作者 刘培松 陶晓贺 李小红 赵梦云 张治军 LIU Peisong;TAO Xiaohe;LI Xiaohong;ZHAO Mengyun;ZHANG Zhijun(Engineering Research Center for Nanomaterials, Henan University, Kaifeng, Henan 475004, P R of China;Petroleum Exploration and Production Research Institute, Sinopec, Beijing 100083, P R of China)
出处 《油田化学》 CAS CSCD 北大核心 2017年第4期604-609,共6页 Oilfield Chemistry
基金 国家自然科学基金"强吸附-疏水性纳米聚硅微粒的制备及其在低渗油田微孔道固液界面的减阻增注行为研究"(项目编号21371047) 河南省科技创新杰出人才计划"特种功能纳米二氧化硅的工业化制备技术及应用研究"(项目编号164200510005)
关键词 超疏水 纳米聚硅 水分散 润湿性 降压增注 super-hydrophobic nano-silica aqueous dispersion wettability injection performance
  • 相关文献

参考文献6

二级参考文献90

共引文献58

同被引文献205

引证文献14

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部