期刊文献+

深度卷积神经网络在SAR自动目标识别领域的应用综述 被引量:17

Applications of Deep Convolutional Neural Network in SAR Automatic Target Recognition:a Summarization
下载PDF
导出
摘要 深度卷积神经网络(DCNN)可自动学习目标层次化特征,在合成孔径雷达(SAR)自动目标识别(SAR-ATR)领域具有广泛应用前景。首先,介绍了DCNN的基本原理以及DCNN在光学图像上的应用与发展;然后,介绍了SAR-ATR的基本概念,综述了DCNN在SAR图像语义特征提取、片段级SAR图像分类、基于数据增强技术的SAR自动目标识别、异质图像变化检测等领域中的前沿应用研究及代表性网络架构;最后,总结并讨论了DCNN在SAR-ATR应用中存在的参数设置经验化、算法泛化能力较弱等不足,并对未来研究方向进行了展望。 Deep Convolutional Neural Network ( DCNN) can automatically learn the target' s hierarchical features,and it has wide application prospect in SAR-Automatic Target Recognition( SAR-ATR). Firstly, the basic principle of DCNN is introduced,and the application and development of DCNN in optical image are studied. Then,the basic concept of SAR-ATR is introduced,and the frontier application research and representative network architecture of DCNN in SAR image semantic feature extraction, frag ment - level S A R image classification,SAR automatic target recognition based on data enhancement technology, heterogene -ous image change detection are reviewed. Finally,the lack of parameter setting and the weak generalization ability of DCNN in SAR-ATR applications are summarized and discussed,and the future research direction is presented.
出处 《电讯技术》 北大核心 2018年第1期106-112,共7页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61302153) 航空科学基金资助项目(20160196003)
关键词 合成孔径雷达 自动目标识别 深度卷积神经网络 应用综述 synthetic aperture radar (SAR) automatic target recognition( ATR) deep convolutional neural network( DCNN) application summarization
  • 相关文献

参考文献5

二级参考文献107

  • 1李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术[J].中国科学(E辑),2005,35(6):597-609. 被引量:20
  • 2HAYKINS.神经网络与机器学习[M].3版.申富饶,徐烨,郑俊,译.北京:机械工业出版社,2011:237.
  • 3ALEX K,ILYA S,HINTON G E.ImageNet classification with deep convolutional neural networks[EB/OL].[2015-02-10].http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
  • 4DAN C,UELI M,JURGEN S.Multi-column deep neural networks for image classification[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2012:3642-3649.
  • 5KAVUKCUOGLU K,SERMANET P,BOUREAU Y,et al.Learning convolutional feature hierarchies for visual recognition[EB/OL].[2015-02-10].http://cs.nyu.edu/-ylan/files/publi/koray-nips-10.pdf.
  • 6KAVUKCUOGLU K,RABZATO M,FERGUS R,et al.Learning invariant features through topographic filter maps[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2009:1605-1612.
  • 7COATES A,LEE H,NG A Y.An analysis of single-layer networks in unsupervised feature learning[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.Piscataway,NJ:IEEE,2011:215-223.
  • 8ZEILER M D,FERGUS,R.Visualizing and understanding convolutional neural networks[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision.Berlin:Springer,2014:818-833.
  • 9BALDI P,LU ZHIQIN.Complex-valued autoencoders[J].Neural Networks,2012,33:136-147.
  • 10LECUN Y,BOTTOU L,BENGIO Y.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.

共引文献671

同被引文献134

引证文献17

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部