摘要
针对低碳柔性作业车间调度问题(flexible job shop scheduling problem,FJSP),提出一种新型蛙跳算法(shuffled frog leaping algorithm,SFLA)以总碳排放最小化,该算法运用记忆保留搜索所得一定数量的最优解,并采取基于种群和记忆的种群划分方法,应用新的搜索策略如全局搜索与局部搜索的协调优化以实现模因组内的搜索,取消种群重组使算法得到简化.采用混合遗传算法和教–学优化算法作为对比算法,大量仿真对比实验验证了SFLA对于求解低碳FJSP具有较强的搜索能力和竞争力.
In this paper low carbon flexible job shop scheduling problem(FJSP) is considered. A new shuffled frog leaping algorithm(SFLA) is proposed to minimize total carbon emission, in which memory is used to store best solutions.Population division is done by using population and memory. Some new strategies such as cooperation of global search and local search are applied to realize the search in the memeplex. Population shuffling is deleted to simplify the algorithm.We compared hybrid genetic algorithm and teaching-learning-based optimization algorithm, which also considered the combination of local search and global search. Extensive experiments are conducted on a number of instances and result analyses show that SFLA has strong search ability and competitiveness for low carbon FJSP.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2017年第10期1361-1368,共8页
Control Theory & Applications
基金
国家自然科学基金项目(61573264
71471151
61374151)资助~~
关键词
柔性作业车间
碳排放
蛙跳算法
记忆
flexible job shop
carbon emission
shuffled frog leaping algorithm
memory