期刊文献+

基于结构化低秩表示和低秩投影的人脸识别算法 被引量:1

Face recognition based on structured low rank representation and low rank projection
下载PDF
导出
摘要 在实际的人脸识别中,给定的训练图像往往存在遮挡和噪声,导致稀疏表示分类(SRC)算法的性能下降。针对上述问题,提出一种基于结构化低秩表示(SLR)和低秩投影的人脸识别方法——SLR_LRP。首先通过SLR对原始训练样本进行低秩分解得到干净的训练样本,根据原始训练样本和恢复得到的干净训练样本得到一个低秩投影矩阵;然后将测试样本投影到该低秩投影矩阵;最后使用SRC对恢复后的测试样本进行分类。在AR人脸库和Extended Yale B人脸库上的实验结果表明,SLR_LRP可以有效处理样本中存在的遮挡和像素破坏。 Occlusion and corruption in the training images result in degraded performance of the sparse representation classification(SRC)algorithm in practical applications of face recognition.Aiming at the aforementioned problem,we propose a new face recognition method based on structured low rank representation(SLR)and low rank projection(LRP),called SLR_LRP.Firstly,the original training samples are decomposed via SLR to obtain clean training samples.And a LRP matrix is learned based on the original training samples and the recovered clean samples.Secondly,test samples are projected onto the LRP matrix.Finally,SRC is exploited to classify the corrected test samples.Experiments on the AR and the Extended Yale B face databases demonstrate that the SLR_LRP can effectively deal with the occlusion and pixel corruption in samples.
出处 《计算机工程与科学》 CSCD 北大核心 2018年第1期108-115,共8页 Computer Engineering & Science
基金 国家自然科学青年基金(61402192) 江苏省高校自然科学研究面上项目(14KJB520006) 江苏省先进制造重点实验室开放课题(HGAMTL-1401)
关键词 低秩矩阵恢复 结构化低秩表示 低秩投影 稀疏表示分类 low rank matrix recovery structured low rank representation low rank projection(LRP) sparse representation classification
  • 相关文献

参考文献4

二级参考文献62

  • 1Wright J,Yang A Y,Ma Yi,et al.Robust face recognition via sparse fepresentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 2Mao X Nguyen,Quang M Le,Vu Pham,Trung N Tran,Bac H Le.Multi-scale spaare representation for robust face recognition[A].Third International Conference on Knowledge and Systers Engineering[C].Hanoi:Viet nam,2011.195-199.
  • 3Allen Yang,Arvind Ganesh,Shankar Sastry,Ma Yi.Fast L1minimization algorithms and an application in robust face recognition:a review[A].IEEE International Conference on Image Processing[C].Hong Kong 2010,1849-1852.
  • 4Yang Meng,Zhang Lei.Gabor feature based sparse representation for face recognition with gabor occlusion dictionary[A].Europeon Conference on Computer Vision[C].Greece:Crete Heraklion,2010.448-461.
  • 5Zhang Nan,Yang Jian.K nearest neighbor based local sparse representation classifier[A].Proc of the 2010 Chinese Conference on Pattrn Recognition[C].China:Chongqing,2010.400-404.
  • 6Yang Meng,Zhang Lei,Jian Yang David Zhang.Robust sparse coding for face recognition[A].IEEE Conference on Computer Vision and Pattern Recognition[C].United states:Colorado Springs,2011.625-632.
  • 7Wagner A,Wright J,Ganesh A,Zhou Zihan,Ma Yi.Towards a practical face recognition system:Robust registration and illumination by sparse representation[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].United states:Miami,FL,2009.597-604.
  • 8Vishal M Patel,Tao Wu,Soma Biswas,P Jonathon Phillips.Illumination robust dictionary-based face recognition[A].IEEE International Conference on Image Processing[C].Belgium:Brussels,2011.777-780.
  • 9Patel V M,Tao Wu,Biswas S,Phillips P J,Chellappa R.Dictionary-based face recognition under variable lighting and pose[J].IEEE Transactions on Information Forensics and Security,2012,7(3):954-965.
  • 10Deng Weihong,Hu Jiani,Guo Jun.Extended SRC:Undersampled face recognition via intra-class variant dictionary[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(9):1864-1870.

共引文献50

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部