期刊文献+

基于最大熵和最小交叉熵方法的上证50ETF期权定价 被引量:1

Pricing Option of Shanghai 50ETF Based on the Methods of Maximum Entropy and Minimum Cross-Entropy
原文传递
导出
摘要 基于最大熵方法和最小交叉熵方法,给出了根据期权价格推断标的资产价格分布的模型和已知先验信息下推断标的资产价格分布的模型,利用拉格朗日乘子法给出了模型的简化解,通过粒子群算法求出标的资产价格的密度函数,进而对上证50ETF期权进行定价比较.实证结果表明:基于最大熵方法推断的分布可以作为标的资产价格分布的较好估计;基于最小交叉熵方法推断的分布是在先验信息下标的资产价格分布的较好估计,两种方法适用于我国上证50ETF期权定价. The estimation of the distribution of an underlying asset from a set of option prices is developed with the principle of maximum entropy and minimum cross-entropy which allows the inclusion of prior knowledge of the asset distribution. The refined solution of model is obtained by using the Lagrange multiplier. This paper selects the Shanghai 50ETF option data and uses the particle swarm optimization algorithm to get the density function of the underlying asset which can be applied to pricing Shanghai 50ETF option. The results show that maximum entropy distribution can provide precise estimations of the underlying asset distribution and minimum cross entropy distribution performs well with prior knowledge. The methods can be applied to pricing options in China financial market.
作者 周荣喜 刘晓 余湄 李杰 ZHOU Rong-xi;LIU Xiao;YU Mei;LI Jie(School of Finance and Banking, University of International Business and Economics, Beijing 100029, China;School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)
出处 《数学的实践与认识》 北大核心 2018年第2期10-19,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(71631005) 教育部人文社会科学研究规划项目(16YJA630078)
关键词 最大熵方法 最小交叉熵方法 上证50ETF期权 期权定价 method of maximum entropy method of minimum cross-entropy shanghai 50etf option option pricing
  • 相关文献

参考文献3

二级参考文献45

  • 1陈倩,李金林,张伦.基于g-h分布的上证指数收益率分布拟合研究[J].中国管理科学,2008,16(S1):226-230. 被引量:11
  • 2秦学志,应益荣.基于鞅和熵原理的资本资产定价方法[J].系统工程理论方法应用,2004,13(5):460-462. 被引量:8
  • 3Black F and Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637-654.
  • 4Stuzer M. A simple nonparametric approach to derivative security valuation[J]. Journal of Finance, 1996, 5(5): 1633-1652.
  • 5Dorje C, Brody R C and Buckley C. Option price calibration from Renyi entropy[J]. Physics Letters A, 2007 366(4-5): 298-307.
  • 6Gulko B L. The entropic market hypothesis[J]. International Journal of Theoretical and Applied Finance, 1998, 2(3): 293-329.
  • 7Shannon, C E. The mathematical theory of communication[J]. Bell Sys Tech J, 1948, 27(3): 379-423,623-656.
  • 8Jaynes E T. Information theory and statistical mechanics[J]. The Physical Review, 1957, 106(4): 620-630, 1957, 108(2): 171-190.
  • 9Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81:637-659.
  • 10邱菀华著.管理决策与应用熵学[M].北京:机械工业出版社,2001,10.

共引文献9

同被引文献16

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部