期刊文献+

高阶q-差分多项式的值分布 被引量:1

The Value Distribution of q-difference Polynomials of High Order
原文传递
导出
摘要 研究了高阶q-差分多项式的值分布性质.特别地,利用Nevanlinna理论考虑了差分多项式f(z)^n△q^kf(z)-a(z)及其导数的零点分布,其中q∈C\{0,1}是使得△q^kf(z)≠0的常数,a(z)(≠0,∞)是f(z)的小函数. In this paper, we investigate the value distribution of q-difference polynomials of high order. In particular, by using Nevanlinna theory, we consider the zero distribution of q-difference polynomials f(z)^n△q^kf(z)-a(z) and its derivative, where q∈C/{0,1} is a constant such that △q^kf(z)≠0, and a(z)(≠0, ∞) is a small function with respect to f(z).
作者 宋宁芳 李叶舟 张继龙 SONG Ning-fang;LI Ye-zhou;ZHANG Ji-long(School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;LMIB and School of Mathematics & Systems Science, Beihang University, Beijing 100191, China)
出处 《数学的实践与认识》 北大核心 2018年第2期184-191,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11571049,61370195)
关键词 高阶q-差分多项式 零点分布 NEVANLINNA理论 q-difference polynomial of high order zero distribution Nevanlinna theory
  • 相关文献

参考文献1

二级参考文献19

  • 1Liu Kai, Liu Xinling, Cao Tingbin. Uniqueness and zeros of g-shift difference polynomials [J]. Proc.Indian Acad. Sci. (Math. Sci.), 2011, 121(3): 301-310.
  • 2Zhang J, Korhonen R J. On the Nevanlinna characteristic of f(qz) and its applications [J]. Math.Anal. Appl., 2010, 369: 537-544.
  • 3Goldberg A A, Ostrovskii I V. Value distribution of meromorphic functions[M]. Transl. Math.Monogr., Vol. 236, Providence, RI: AMS, 2008.
  • 4Hayman W K. Meromorphic f\inctions[M]. Oxford: Clarendon Press, 1964.
  • 5Barnett D G, Halburd R G, Korhonen R J, Morgan W. Nevanlinna theory for the g-differenceoperator and meromorphic solutions of g-difFerence equations [J]. Proceedings of the Royal Societyof Edinburgh, 2007, 137A: 457-474.
  • 6Liu Kai, Qi Xiaoguang. Meromorphic solutions of q-shift difference equations [J]. Ann. Pol. Math.,2011, 101(3): 215-225.
  • 7Laine I, Yang C C. Value distribution of difference polynomials [J]. Proc. Japan Acad., 2007, 83A:148-151.
  • 8Yang C C, Yi Hongxun. Uniqueness theory of meromorphic functions [Mj. Kluwer Academic Pub-lishers, 2003.
  • 9Liu Kai, Liu Xinling, Cao Tingbin. Values distributions and uniqueness of difference polynomials[J]. Advances in Difference Equations, 2011, dio:10.1155/2011/234215.
  • 10Xu Junfeng, Zhang Xiaobin. The zeros of g-shift difference polynomials of meromorphic functions [J].Advances in Difference Equations, 2012, http://www.advancesindifferenceequations.com/content/2012/1/200.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部