摘要
研究了高阶q-差分多项式的值分布性质.特别地,利用Nevanlinna理论考虑了差分多项式f(z)^n△q^kf(z)-a(z)及其导数的零点分布,其中q∈C\{0,1}是使得△q^kf(z)≠0的常数,a(z)(≠0,∞)是f(z)的小函数.
In this paper, we investigate the value distribution of q-difference polynomials of high order. In particular, by using Nevanlinna theory, we consider the zero distribution of q-difference polynomials f(z)^n△q^kf(z)-a(z) and its derivative, where q∈C/{0,1} is a constant such that △q^kf(z)≠0, and a(z)(≠0, ∞) is a small function with respect to f(z).
作者
宋宁芳
李叶舟
张继龙
SONG Ning-fang;LI Ye-zhou;ZHANG Ji-long(School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;LMIB and School of Mathematics & Systems Science, Beihang University, Beijing 100191, China)
出处
《数学的实践与认识》
北大核心
2018年第2期184-191,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(11571049,61370195)