摘要
研究一类N双调和方程△N^2u-△Nu+V(x)|u|^N-2u=f(x,u),x∈R^N 其中f(x,u)=λg(x)|u|^p-2u+h(u),1〈P〈N,λ≥0是参数,权函数V(x),9(x),h(u)满足一定的条件.运用对称山路定理和Schwarz对称化方证明了方程存在无穷多个弱解.
In this paper, we consider a class of N-biharmonic function: △N^2u-△Nu+V(x)|u|^N-2u=f(x,u),x∈R^N where f(x, u) = λg(x)|u|^P-2u+h(u), 1 〈 p 〈 N, A ≥ 0, The weight functions V(x),g(x), h(u) satisfy some suitable conditions. Applying symmetric Mountain Pass Theorem and Schwaxz symmetrization method, we prove the problem had infinitely many solutions.
作者
陈林
CHEN Lin(College of Mathematics and Statistic, Yili Normal University, YiNing 835000, Chin)
出处
《数学的实践与认识》
北大核心
2018年第2期212-222,共11页
Mathematics in Practice and Theory
基金
新疆高校科研计划重点资助项目(XJEDU2016I043)
伊犁师范学院科研计划项目(YSYB201519)
伊犁师范学院博士科研启动基金项目(2017YSBS08)