期刊文献+

有界线性算子的(h)性质和(gh)性质

Properties (h) and (gh) for Bounded Linear Operators
原文传递
导出
摘要 研究了有界线性算子的(h)性质和(gh)性质的问题.利用算子的单值扩张性的方法,获得了Banach空间上有界线性算子的(h)性质和(gh)性质的几个充分必要条件以及它们与其他Weyl型定理之间的关系,(h)性质和(gh)性质是a-Weyl定理和广义a-Weyl定理的推广. In this paper, we introduce and study the properties (h) and (gh), which extend a- Weyl's theorem and generalized a-Weyl's theorem.We establish for a bounded linear operator defind on Banach space several sufficient and necessary conditions for which property (h) and property (gh) hold.We also relate these properties with Weyl's type theorems. We also study the properties (h) and (gh) for the operators satisfying the single valued extension property. Moreover, these properties are studied in the framework of polaroid operators.
作者 乌日柴胡 阿拉坦仓 Wurichaihu;Alatancang(School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China;School of Mathematical Sciences, Inner Mongolia Normal University, Hohhot 010022, China;Department of Mathematics, Hohhot University for Nationalities, Hohhot 010051, China)
出处 《数学的实践与认识》 北大核心 2018年第2期244-253,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(11402127,11561053,11761029) 内蒙古师范大学科研基金(2013ZRYB17,2016ZRYB001)
关键词 有界线性算子 WEYL定理 (h)性质 (gh)性质 bounded linear operators weyl's theorem property (h) property (gh)
  • 相关文献

参考文献2

二级参考文献31

  • 1Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J., 43(3), 457-465 (2001)
  • 2Berkani, M.: B-Weyl spectrum and poles of the resolvent. J. Math. Anal. Applications, 272(2), 596-603(2002)
  • 3Berkani, M.: Index of B-Fredholm operators and Generalization of a Weyl Theorem. Proc. Amer. Math.Soc., 130(6), 1717-1723 (2002)
  • 4Weyl, H.: Uber beschrankte quadratischc Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909)
  • 5Rakocevic, V.:Operators obcying α-Weyl's theorem. Rev, Roumaine Math. Pures Appl., 34(10), 915-919(1989)
  • 6Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math., (Szeged) 69, 359-376 (2003)
  • 7Labrousse, J. Ph.: Les operateurs quasi-Fredholm: une generalisation des operateurs semi-Fredholm. Rend.Circ. Math. Palermo, (2), 29, 161-258 (1980)
  • 8Grabiner, S.: Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 34, 317-337 (1982)
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 163, 18-49(1966)
  • 10Berkani, M., Arroud, A.: Generalized Weyl's Theorem and hyponormal operators. J. Aust. Math. Soc.,76, 291-302 (2004)

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部