期刊文献+

基于IFPOWA算子的MULTIMOORA群体综合评价方法及在教学评价中的应用 被引量:3

A Method Based on IFPOWA Operator for Intuitionistic Fuzzy MULTIMOORA Group Comprehensive Evaluation and Its Application to Teaching Evaluation
原文传递
导出
摘要 为解决传统MULTIMOORA方法无法适用于直觉模糊信息情形及其未考虑集成数据间特征等缺陷,提出一种基于直觉模糊幂均有序加权平均(IFPOWA)的MULTIMOORA群体综合评价方法.方法不用事先确认专家的权重,可根据专家间的评价信息的支持度,利用IFPOWA直接集结评价专家的个体信息从而得到群体评价意见,在此基础上根据MULTIMOORA模型中的比率系统、全乘模型和参照点法模型的评价结果可得出方案的最终排序,最后用实例验验证其可行性及有效性. The classic MULTIMOORA method is unsuitable to deal with intuitionistic fuzzy information and consider input data characters. In order to overcome this drawback, in this paper, we develop a Power intuitionistic fuzzy operator ordered weighted averaging (IFPOWA) method for MULTIMOORA group decision making. This method doesn't need to solve the weights o f experts, the IFPOWA is used to aggregate the experts' evaluation according to their mutual support. Based on the results of the Ratio System, the Reference Point and the Full Multiplicative Form, we can get the final rank of the alternatives. Finally, a numerical example is provided to show the validity and applicability of the presented method.
作者 曾守桢 鲍风雨 俞凯峰 ZENG Shou-zhen;BAO Feng-yu;YU Kai-feng(School of Business, Ningbo University, Ningbo 315211, China)
机构地区 宁波大学商学院
出处 《数学的实践与认识》 北大核心 2018年第2期298-306,共9页 Mathematics in Practice and Theory
基金 国家统计局科研项目(2016LZ43 2017LY100) 宁波大学教学改革重点项目 浙江省自然科学基金(LYG010007)
关键词 直觉模糊集 MULTIMOORA 幂均加权 综合评价 教学评价 intuitionistic fuzzy set MULTIMOORA power aggregation comprehensive evaluation teaching evaluation
  • 相关文献

参考文献3

二级参考文献78

  • 1Atanassov K.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 2Xu Z S, Yager R R.Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group[J].Fuzzy Optimization and Decision Making, 2009, 8(2): 123-139.
  • 3Xu Z S.A method based on distance measure for intervalvalued intuitionistic fuzzy group decision making[J].Information Sciences, 2010, 180(1): 181-190.
  • 4Xu Z S.Intuitionistic fuzzy multiattribute decision making: An interactive method[J].IEEE Trans on Fuzzy Systems, 2012, 20(3): 514-525.
  • 5Xu Z S, Xia M M.Identifying and eliminating dominated alternatives in multi-attribute decision making with intuitionistic fuzzy information[J].Applied Soft Computing, 2012, 12(4): 1451-1456.
  • 6Xu Z S.A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making[J].Group Decision and Negotiation, 2010, 19(1): 57-76.
  • 7Xu Z S.Models for multiple attribute decision making with intuitionistic fuzzy information[J].Int J of Uncertainty, Fuzziness and Knowledge Based Systems, 2007, 15(3): 285-297.
  • 8Wan S P.Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multiattribute group decision making[J].Applied Mathematical Modelling, 2013, 37(6): 4112-4126.
  • 9Wu J, Cao Q W.Same families of geometric aggregation operators with intuitionistic trapezoidal fuzzy numbers[J].Applied Mathematical Modelling, 2013, 37(1/2): 318-327.
  • 10Zhang X, Jin F, Liu P D.A grey relational projection method for multi-attribute decision making based on intuitionistic trapezoidal fuzzy number[J].Applied Mathematical Modelling, 2013, 37(5): 3467-3477.

共引文献22

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部