摘要
数学建模在水面舰艇编队防空系统中起到不可估量的作用.通过实例,分析一枚及多枚来袭导弹穿越护卫舰时的数学关系,得出护卫舰100%发现来袭导弹的最大工作半径为25km;并在此基础上建立100%防御成功条件下防御面积最大化的数学模型.计算得出编队的最佳设计阵型为:四艘护卫舰布置在以指挥舰为中心、半径为59km的圆上,各舰相对于指挥舰的方位角分别为45°、95°、145°和195°.根据各战舰拦截导弹过程的运动关系,求得了最优阵型下舰队拦截来袭导弹的最大批次.
Mathematical modeling plays an important role in fleet air defense systems.Through one and several incoming missiles across the frigate mathematical relationship analysis, obtains the frigate 100% found incoming missiles maximum working radius of 25 km,and on this basis, established under the condition of 100% successful defense area is maximized by mathematical models. After calculation, obtained the best formation is designed as four frigates are arranged in the command ship as the center radius of the circle of 59 km.The ship relative to the command ship of the azimuth respectively 45. °, 95. °, 145. ° and 195. °. According to the movement relationship of the warships intercepting the missile process, the maximum batch of the fleet intercepted missiles was obtained under the optimal formation.
出处
《数学的实践与认识》
北大核心
2017年第24期1-5,共5页
Mathematics in Practice and Theory
关键词
舰艇编队防空
数学模型
约束条件
运动关系
fleet air defense
mathematical model
constraint condition
motion relation