期刊文献+

全空间中一类非局部问题非平凡解的存在性 被引量:1

Existence of Nontrivial Solutions for a Class of Nonlocal Problem in R^N
原文传递
导出
摘要 利用变分方法研究了R^N上一类带有临界非线性项的p-Kirchhoff型问题非平凡解的存在性.首先得到了该问题的能量泛函并证明了其具有山路引理的几何结构.其次给出了山路值c的一个上界并且证明了相应的(PS)_c序列是有界的.最终利用集中紧性原理及其它相关知识证明了能量泛函满足(PS)_c条件,从而表明了能量泛函存在非零的临界点,即证明了该问题至少存在一个非平凡解. This paper is concerned with the existence of nontrivial solutions for p-Kirchhoff type problem in R-N with critical nonlinearities by using variational methods. Firstly, the energy functional of the problem was obtained and it was proved to satisfy mountain pass geometry. Then, an upper bound of mountain pass value c was given and it was proved that the(PS)c sequence of the energy functional is bounded. Consequently, it was proved that the(PS)c sequence contains a strong convergent subsequence by using the concentrated compactness principle and other related knowledge, thus indicated that the energy functional exists nonzero critical points, it was proved that the problem has at least a nontrivial solution.
出处 《数学的实践与认识》 北大核心 2017年第24期278-288,共11页 Mathematics in Practice and Theory
基金 国家自然科学青年基金(11601363) 山西省青年科技基金(201601D021011)
关键词 Kirchhoff型问题 非平凡解 变分方法 集中紧性 kirchhoff type problem nontrivial solutions variational methods concentrated compactness
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部