期刊文献+

高时空分辨的神经递质电化学传感检测技术发展与展望 被引量:1

Electrochemical Sensing of Neurotransmitters with High Temporal and Spatial Resolution
原文传递
导出
摘要 目前,实现对细胞神经递质释放过程的高时空分辨实时监测,仍存在诸多挑战。近些年来,通过发展不同的电化学检测技术实现了对细胞胞吐(exocytosis)释放以及细胞内部囊泡的定量化分析;一些研究使用这些技术,进行了细胞释放模式的探究。通过在电极表面修饰小分子或者调控电极尺寸,可实现高分辨率和高灵敏度的监测。文章重点介绍了神经递质电化学检测的机理、微米电极以及纳米电极检测技术的发展,对电化学传感与成像技术的联用进行了评述,并对电化学传感检测技术未来发展方向进行了展望。在此基础上,文章综合各种不同监测技术的优点,提出构建纳米电极与成像以及其他检测手段的联用技术,以大幅提高纳米电极在神经递质检测方面的能力。 Currently, real time monitoring the release of neurotransmitters from living cells with high temporal and spatial resolution remains challenging. In recent years, quantitative analysis of neurotransmitter releasing has been achieved by developing different electrochemical monitoring techniques, and cell release patterns have been investigated. In addition, monitoring with high resolution and sensitivity can be achieved by modifying the electrode surface or regulating the electrode dimensions. The combining of different monitoring techniques can further improve the monitoring capability. This paper reviews the mechanism of electrochemical detection of neurotransmitter, the development of microelectrode and nanoelectrode for neurotransmitter detection, the coupling of electrochemical technology and imaging technology to realize the high temporal and spatial resolution. The paper also provides some outlooks in the future direction. Based on these reviews and future perspectives, taking the advantages of different monitoring techniques, the paper proposes the coupling among the nanoelectrode and imaging technology, as well as other monitoring techniques, aiming at greatly elevating the capability of nanoelectrode in neurotransmitter monitoring.
出处 《中国科学院院刊》 CSCD 2017年第12期1290-1302,共13页 Bulletin of Chinese Academy of Sciences
基金 国家自然科学基金项目(21422508 31470960)
关键词 神经递质 高时空分辨率 囊泡释放 纳米电极 电化学 neurotransmitter high temporal and spatial resolution vesicle release nanoelectrode electrochemical
  • 相关文献

参考文献3

二级参考文献125

  • 1黄波,李建军,程介克.毛细管电泳柱后化学发光检测装置的研制[J].高等学校化学学报,1996,17(4):528-530. 被引量:10
  • 2Choi, H. M. T.; Chang, J. Y.; Trinh, L. A.; Padilla, J. E.; Fraser, S. E.; Pierce, N. A. Nat. Biotechnol. 2010, 28, 1208.
  • 3Venkataraman, S.; Dirks, R. M.; Rothemund, P. W. K.; Winfree, E.; IPierce, N. A. Nat. Nanotechnol. 2007, 2, 490.
  • 4Venkataraman, S.; Dirks, R. M.; Ueda, C. T.; Pierce, N. A. Proc. Natl. Acad. Sci. 2010, 107, 16777.
  • 5Dirks, R. M.; Pierce, N. A. Proc. Natl. Acad. Sci. 2004, 101, 15275.
  • 6Green, S. J.i Lubrich, D.; Turberfield, A. J. Biophys..1. 2006, 91, 2966.
  • 7Lubrich, D.; Green, S. J.; Turberfield, A. J. J. Am. Chem. Soc. 2009, 131, 2422.
  • 8Turberfield, A. J.; Mitchell, J. C.; Yurke, B.; Mills, A. P., Jr.; Blakey, M. l.; Simmel, F. C. Phys. Rev. Lett. 2003, 90, 118102.
  • 9Niu, S.; Jiang, Y.; Zhang, S. Chem. Commun. 2010, 46, 3089.
  • 10Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Nat. Mater. 2005, 4, 826.

共引文献16

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部