期刊文献+

高阶线性微分方程的解与小函数的关系研究

The Relation between the Solutions of Higher Order Linear Differential Equations and Small Functions
下载PDF
导出
摘要 利用值分布理论研究复微分方程解的增长级及解与小函数的关系.在复数域内分别定义数目函数、平均中值函数及特征函数,运用Poisson-Jesen公式建立值分布理论的基本定理,将所定义的函数引入Jesen公式,变换后获得值分布理论的第一基本定理和第二基本定理.在复平面上考虑高阶微分方程,研究方程系数[p,q]解的增长级问题.对于高阶非齐次线性微分方程,方程解多项式级为小于n的亚纯函数,取小函数上点时收敛指数为无穷大. The relation between the growth stage and the solution of the complex differential equation and the small function is studied by the value distribution theory.In the complex domain,the number function,the mean median function and the characteristic function are defined respectively,and the basic theorem of the value distribution theory is established by using the Poisson-Jesen formula.The defined function is introduced into the Jesen formula.After transformation,the first fundamental theorem and the second fundamental theorem of the value distribution theory are obtained.In the complex plane,the higher order differential equations are considered.Study on the coefficients of equation,the growth of solutions of[p,q].For higher order nonhomogeneous linear differential equations,solution of polynomial is less than n of meromorphic function equation,taking small function point convergence index is infinite.
作者 唐天国
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2017年第6期803-806,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 四川省高等职业教育研究中心2016年科研立项课题(GZY16B09)
关键词 线性微分方程 方程解 值分布理论 小函数 linear differential equation equation solution value distribution theory small function
  • 相关文献

参考文献5

二级参考文献38

  • 1张建梅,孙志田,崔宁.关于y″+py′+qy=Ae^(αx)的特解[J].高等数学研究,2005,8(3):14-15. 被引量:18
  • 2Paley H, Wiener N. Fourier Transforms in the Complex Domain. Am. Math. Soc. Colloq. Publ., 1934.
  • 3Golovin V D. Stability of an exponential-function basis. Dokl. Akad. Nauk. Arm. SSR, 1963, 36(2): 65-70.
  • 4Kadets M I. The exact value of the Paylet-Wiener constant. Dokl. Akad. Nauk. SSSR, 1964, 55(6): 1253-1254.
  • 5Levin B Y. Exponential bases in L. Zapiski Matem. Otk. Fiz.-Matem. F-ta Khar'kovskogo Un-ta i Khar'kovskogo Matem. Ob-ya, 1961, 27(4): 39-48.
  • 6Favier S J, Zalik R A. On the stability of frames and Riesz bases. Applied Comp. Harm. Anal., 1995, 2:160-173.
  • 7He X H, Volkmer H. Risesz bases of solutions of Sturm-Liouville equations. J. Fourier Anal. Appl., 2001, 7(3): 297-307.
  • 8Harutuinyan T, Pahlevanyan A, Srapionyan A. Riesz bases generated by the spectra of Sturm-Liouvile problems. Electron. J. Differential Equations, 2013, 2013(71): 1-8.
  • 9Young R M. An introduction to nonharmonic Fourier series. San Diego, CA: Academic Press, Inc., 2001.
  • 10Yurko V A. An inverse problem for integro-differential operators. Mat. Zametki, 1991, 50(5): 134-146 (in Russian); English Transl. in Math. Notes, 1991, 50:1188-1197.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部