期刊文献+

分数阶导数的非线性微分方程边值问题

The Boundary Value Problem of Nonlinear Differential Equation of Fractional Derivative is Obtained by Continuous Function
下载PDF
导出
摘要 利用连续函数研究分数阶导数的非线性微分方程边值问题.通过确界定理和单调有界定理,结合构造方法对连续函数进行构造.在给定分数阶导数的条件下,引入扰动方法,利用Green函数定义非线性分数阶导数的微分方程积分算子,运用Banach压缩映像理论,证明了在连续函数空间内分数阶导数的非线性微分方程边值存在唯一解. The nonlinear differential equations of fractional derivative boundary value problem is studied by using continuous functions.A continuous function is constructed by supremum theorem and monotone bounded theorem combined with the construction method.The fractional derivative is given under the condition of introducing perturbation method,differential equation of nonlinear fractional integral operators is defined by the derivative of Green function.Banach compressed image theory has proved in continuous function space of nonlinear differential equations of fractional derivative boundary value has a unique solution.
作者 朱垚
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2017年第6期807-809,共3页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 湖北省高等学校省级教学研究项目(2012458)
关键词 非线性 分数阶导数 积分边界条件 微分方程 存在性 nonlinear fractional derivative integral boundary condition differential equation existence
  • 相关文献

参考文献4

二级参考文献28

  • 1廖科,袁晓,蒲亦非,周激流.1/2阶分数演算的模拟OTA电路实现[J].四川大学学报(工程科学版),2005,37(6):150-154. 被引量:8
  • 2蒲亦非,袁晓,廖科,周激流.一种实现任意分数阶神经型脉冲振荡器的格形模拟分抗电路[J].四川大学学报(工程科学版),2006,38(1):128-132. 被引量:17
  • 3廖科,袁晓,蒲亦非,周激流.正则牛顿过程设计n分之一阶分抗电路(英文)[J].四川大学学报(自然科学版),2006,43(1):104-108. 被引量:1
  • 4WANG Yongqiang , LIU Lishan , WU Yonghong, Positive Solutions for a Class of Fractional Boundary Value Problem with Changing Sign Nonlinearity[J]. Nonlinear Anal: Theory, Methods & Applications, 2011. 74(17) : 6434-6441.
  • 5XU Xiaojie ,JIANG Daqing , YUAN Chengjun. Multiple Positive Solutions for the Boundary Value Problem of a Nonlinear Fractional Differential Equation[J]. Nonlinear Anal: Theory, Methods & Applications, 2009, 71(0): 4676-4688.
  • 6BAI Zhanbing, UJ Haishen. Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation[J].J Math Anal Appl , 2005, 311(2): 495-505.
  • 7BAI Zhanbing , SUN Weichen. Existence and Multiplicity of Positive Solutions for Singular Fractional Boundary Value Problems[J]. Comput Math Appl , 2012, 63(9): 1369-1381.
  • 8Alsaedi A, Ahmad B, Assolami A. On Antiperiodic Boundary Value Problems for Higher-Order Fractional Differential Equations[J/OL]. Abstr Appl Anal, 2012-07-01. http://dx.doi. arg/10. 1155/2012/325984.
  • 9HAN Xiaoling , GAO Hongliang, Existence of Positive Solution for Eigenvalue Problem of Nonlinear Fractional Differential Equations[J]. Adv Difference Equ, 2012, 2012: 66.
  • 10BAI Zhanbing, QIU Tingting, Existence of Positive Solution for Singular Fractional Differential Equation[J]. Appl Math Comput , 2009, 215(7): 2761-2767.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部