摘要
The paper deals with the complex refractive index and photoluminescence in the IR-VIS light region of two sample types (i) black p-type silicon (BSi) produced by the surface structure chemical transfer method using Pt catalytic mesh, and (ii) porous p-type silicon prepared by standard electrochemical etching. We present, compare, and discuss the values of the IR-VIS complex refractive index obtained by calculation using the Kramers-Kronig transformation and the photoluminescence properties thereof. The results indicate that differences between the optical properties of the BSi and the porous Si are given by (a) the oxidation procedure of BSi, (b) the thickness of the formed black and porous Si layer, and by (c) the porosity of both layer types. We assume that the photoluminescence signal generated by oxidized BSi structures can be mainly related to the quantum confinement effect, while the photoluminescence of the porous p-type Si is caused by the optical activity of the SiOxHy compounds covering its surface region.