期刊文献+

面向遥感影像场景的深度卷积神经网络递归识别模型 被引量:7

Remote Sensing Image Scene Oriented Convolutional Neural Network Recursive Recognition Model
原文传递
导出
摘要 在遥感影像场景识别过程中,针对利用卷积神经网络进行固定格网影像场景识别时存在类间可分性不高和局部细节粗糙等问题,提出一种深度卷积神经网络递归识别模型(DCNN-RR)。该模型首先构建卷积层、采样层交替的多层卷积神经网络进行遥感影像多分辨率场景训练。然后,根据格网影像softmax概率计算场景类间混淆指数(Confusion Index,CI),四分格网递归进行卷积神经网络识别,并采用多重窗口滑动递归微调直至CI达到峰值来精准定位场景目标。通过高分辨遥感影像实验表明该模型可适应不同尺度地物的变化,相比固定格网影像显著提高了场景识别精度,局部细节也更为精细。 In order to solve low separability and rough details in scene recognition, remote sensing image scene oriented convolutional neural network recursive recognition model is presented.Firstly,deep convolu- tional neural network with multi-convolutional layers and multi-pooling layers is constructed by multi-res- olution scenes.Then quad-grids are subdivided to DCNN scene recursive recognition based on Confusion In- dex (CI)by softmax probability,and multi-sliding windows are used to tune recursively for accurately loca ting scene targets.Experimental results show that the proposed model can adapt scene recognition with dif- ferent scale,and significantly improve the accuracy compared with the commonly used DCNN.
出处 《遥感技术与应用》 CSCD 北大核心 2017年第6期1078-1082,共5页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(41401526) 江西省自然科学基金项目(20171BAB213025) 流域生态与地理环境监测国家测绘地理信息局重点实验室资助课题(WE2015003) 江西省教育厅科技项目 江西省高等学校科技落地计划项目(KJLD14049)
关键词 场景识别 卷积神经网络 深度学习 混淆指数 递归 Scene recognition Convolutional Neural Network (CNN) Deep learning Confusion Index(CI) Recursion
  • 相关文献

参考文献3

二级参考文献20

  • 1Hofmann T. Unsupervised Learning by Probabilistic Latent Semantic Analysis [J]. Machine Learning, 2003, 42:177-196.
  • 2Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003,3 /993-1 022.
  • 3Blei D M, I.afferty J. Correlated Topic Models[C]. Neural Information Processing Systems, Vancouver B C, Canada, 2006.
  • 4I.i Wei, McCallum A. Pachinko Allocation: DAG- Structured Mixture Models of Topic Correlations EC2. The 23rd International Conference on Machine Learning (ICML), New York, USA, 2006.
  • 5I.i C S, Castelli V. Deriving Texture Feature Set for Content Based Retrieval of Satellite Image Database [C]. International Conference on Image Processing, Santa Barbara, CA, USA, 1997.
  • 6Dai Dengxin, Yang Wen. Satellite Image Classification via Two-layer Sparse Coding with Biased Image Representation [J]. IEEF. Geoscience and Remote Sensing Letters, 2011, 8(1):173-176.
  • 7Xia Guisong, Yang Wen, Delon J I J, et al. Structrual High-Resolution Satellite Image Indexing[C]. IS PRS TC VII Symposium(Part A): 100 Years IS- PRS Advancing Remote Sensing Science, Vienna, Austria,2010.
  • 8Berg A C, Malik J. Geometric Blur for Template Matching[C]. IEEE CS Conf Computer Vision and Pattern Recognition (CVPR), Hawaii,2001.
  • 9Li F F, Perona P. A Bayesian Hierarchical Model for Learning Natural Scene Categories[C]. IEEE CS Conf Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 2005.
  • 10Bosch A, Zisserman A, Munoz X. Scene Classification Via Plsa[C]. European Conference on Computer Vision, Graz, Austria, 2006.

共引文献70

同被引文献56

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部