期刊文献+

3.5GHz车联网信道测量与仿真对比分析 被引量:3

Contrastive analysis of internet of vehicles on channel measurement and simulation at 3.5GHz
下载PDF
导出
摘要 针对第五代(the 5th Generation,5G)移动通信试验频段中的3.5GHz开展测量和分析研究.利用自主研发的频域信道探测系统对车联网场景进行测试,同时,利用自主研发的射线跟踪仿真器产生车联网场景的信道数据.通过校正几何模型和材料库对实测场景进行仿真,并与实测结果进行接收功率的对比,进而利用对数距离路径损耗模型对实测和仿真场景的路径损耗曲线进行拟合.结果表明,仿真场景的路径损耗因子和阴影衰落标准差的相对误差都不超过7%,从而验证了射线跟踪仿真器在信道仿真中的有效性和准确性.本文的研究内容将对未来5G车联网中低于6GHz频段的选择和网络部署提供研究依据和指导. In this paper, measurement and analysis are carried out for 3.5 GHz in the 5th generation(5G)mobile communication test frequency band. The self-developed frequency domain channel sounding system is used to measure the 3.5 GHz channel in the vehicular network scenario. Moreover, the same channel data is generated by the self-developed ray-tracing simulator. The calibrated geometric model and material library are used to simulate the measured scenario and compare with the received power of the measured result. Finally, the path loss curves of the measured and simulated results are fitted by the logarithmic distance path loss model. The results show that the relative error of path loss factor and standard deviation of the simulated scene are less than 7%, which verifies the effectiveness and accuracy of the ray-tracing simulator in channel simulation.Both the path loss exponent and shadowing factor,which are studied in this paper, will be useful for the frequency band selection and network deployment of the 5G vehicular networks at frequencies lower than 6 GHz.
出处 《电波科学学报》 CSCD 北大核心 2017年第5期584-594,共11页 Chinese Journal of Radio Science
基金 国家自然科学基金(61501021 U1334202) 中央高校基本科研业务费专项资金(2016JBM075) 国家科技重大专项子课题(2016ZX03001021-003)
关键词 3.5 GHz 车联网 信道探测 射线跟踪 路径损耗模型 几何校正 仿真对比 3.5 GHz vehicular network channel sounding ray-tracing path loss model geometric calibration simulation comparison
  • 相关文献

参考文献5

二级参考文献33

  • 1扈罗全,朱洪波.超宽带室内多径信道随机分析模型[J].电波科学学报,2006,21(4):482-487. 被引量:11
  • 2MOLISCH A F, CASSIOLI D, CHONG C C, et al. A comprehensive standardized model for ultrawideband propagation channels [J]. IEEE Trans Antenn Propag, 2006, 54(11): 3151-3166.
  • 3MOLISCH A F. Ultra-wide-band propagation channels [J]. Proceedings of the IEEE, 2009, 97(2): 353-371.
  • 4MOLISCH A F. Ultrawideband propagation channels theory, measurement, and modeling[J]. IEEE Trans on Vehicular Technology, 2005, 54(5): 1528-1545.
  • 5QING Xianming, CHEN Zhining, CHIA Y W M. Network approach to UWB antenna transfer functions characterization [ C ]// 2005 European Microwave Conference, October 4-6, 2005(3): 3-4.
  • 6LAMENSDORF D, SUSMAN L, Baseband pulse an- tenna techniques[J] IEEE Antennas Propag Mag, 1994, 36(1): 20-30.
  • 7CRAMER RJ M, SCHOLTZ R A, WIN M Z. Evalu- ation of an ultrawide-band propagation channel [J]. IEEE Trans Antennas Propag, 2002, 501 561-570.
  • 8FLEURY B H, TSCHUDIN M, HEDDERGOT R, DAHLttAUS D, et al. Channel parameter estimation in mobile radio environments using the sage algorithm [J]. IEEE J Sel Areas Commun, 1999, 17(3): 434- 450.
  • 9RAPPAPORT T S. Wireless Communications Prin- ciples and Practice[M]. 2nd edition. Upper Saddle River: Prentice Hall, 2002.
  • 10LIU Leilei, WAND Yuanqing, ZHANG Yan, Ultra- wideband channel measurement and modeling for the future intra-vehicle communications [J]. Microwave and Optical Technology Letters, 2012, 54(2): 322- 326.

共引文献9

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部