期刊文献+

选区激光熔化316L大层厚成形工艺及性能研究 被引量:12

Study on the Forming Process and Performance of 316L High Layer Thickness by Selective Laser Melting
原文传递
导出
摘要 针对316L金属粉末进行选区激光熔化(SLM)成形工艺研究,以获得高致密度块体。为了提高SLM成形效率,对150μm大层厚成形过程进行了研究。通过改变曝光时间,块体试样致密度可达到99.99%,成形率可达到8.1mm3/s,约为以往研究中成形率的2~8倍。此外,还发现三种典型缺陷,熔池间未熔合缺陷,熔池内部微孔缺陷和无规律分布的球化缺陷。熔池间未熔合缺陷可通过调整工艺参数予以消除,微孔和球化缺陷对致密度的影响较小,但通过调整工艺参数,很难将其完全消除。平均屈服强度、抗拉强度和延伸率分别为525MPa、625MPa和40.1%,这与以往小层厚成形的拉伸性能没有明显差异,这是由于不同层厚都具有类似的冶金结合和微观结构。 The forming process of selective laser melting(SLM)of 316 Lis studied to obtain high density blocks.In order to improve the forming efficiency of SLM,the forming process of 150μm high layer thickness is studied.The density of block sample can reach 99.99%,the forming rate can reach 8.1 mm3/s,which is about 2~8 times of the forming rate in the previous research.In addition,three typical defects are also observed:the un-melted defects between melting pool,micro-pores defects within the pool and irregular distribution of spherical defects.The un-melted defects between the melting pool can be eliminated by adjusting process parameters,micro-pores and spherical defects have little effect on density,but it is difficult to eliminated them completely by adjusting process parameters.The average yield strength,tensile strength and elongation are 525 MPa,625 MPa,and 40.1%,respectively,which are not significantly different from the tensile properties of the former small thickness because of similar metallurgical bonding and microstructure.
出处 《应用激光》 CSCD 北大核心 2017年第6期801-807,共7页 Applied Laser
基金 国家自然科学基金资助项目(项目编号:51505006) 2016学位与研究生教育资助项目(项目编号:11000101010)
关键词 选区激光熔化 大层厚 316L 缺陷 微观结构 力学性能 selective laser melting high layer thickness 316L defects microstructure mechanical properties
  • 相关文献

参考文献2

二级参考文献26

  • 1A Simchi, H Pohl. Direct laser sintering of iron-graphite powder mixture[J]. Materials Science and Engineering A, 2004, 383(2): 191- 200.
  • 2B C Zhang, L Dembinski, C Coddet. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316 L powder[J]. Materials Science and Engineering A, 2013, 584: 21-31.
  • 3J P Kruth, L Froyen, J V Vaerenbergh, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1-3): 616-622.
  • 4Y C Liu, F Lan, G C Yang, et al. Microstructural evolution of rapidly solidified Ti-A1 peritectic alloy[J]. Journal of Crystal Growth, 2004, 271(1-2): 313-318.
  • 5M Schwarz, C B Arnold, M J Aziz, et al. Dendritic growth velocity and diffusive speed in solidification of undercooled dilute Ni-Zr melts [J]. Materials Science and Engineering A, 1997, 226: 420-424.
  • 6B Song, S J Dong, Q Liu, et al. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior[J]. Materials and Design, 2014, 54: 727-733.
  • 7D D Gu, Y C Hagedorn, W Meiners, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.
  • 8H H Zhu, L Lu, J Y H Fuh. Influence of binder's liquid volume fraction on direct laser sintering of metallic powder[J]. Materials Science and Engineering A, 2004, 371(1-2): 170-177.
  • 9D D Gu, Y F Shen. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys and Compounds, 2009, 473(1-2): 107-115.
  • 10C Weingarten, D Buchbinder, N Pirch, et al. Formation and reduction of hydrogen porosity during selective laser melting of A1Si 10Mg [J]. Journal of Materials Processing Technology, 2015, 221:112-120.

共引文献56

同被引文献77

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部