期刊文献+

面向轨迹聚类的差分隐私保护方法 被引量:5

Differential privacy preserving method for trajectory clustering
原文传递
导出
摘要 针对目前的轨迹聚类隐私保护方法存在适用性较窄、可用性较低及难以在实际应用中实施的问题,提出了支持轨迹聚类的差分隐私保护方法.首先给出了典型轨迹聚类算法的通用框架模型及其差分隐私定义,然后根据定义设计满足差分隐私机制的二维拉普拉斯噪声,最后将直角坐标系中得到的噪声形式变换到极坐标系,并加入到原始轨迹点中以进行实际应用实现.实验结果表明:与当前的轨迹聚类隐私保护方法相比,本文算法具有更好的适用性和聚类效果. As existing privacy preserving mechanisms for trajectory clustering are still faced with the problems of narrow applicability,low-level utility,which are difficult to imply in real scenarios,a differential privacy preserving mechanism was proposed to support trajectory clustering. Firstly,general framework model of typical trajectory clustering algorithms was given and the definition of differential privacy was introduced according to the framework. Then,the probability density function of two-dimensional Laplace noise satisfying the above definitions was derived. Finally, the noise from Cartesian coordinate system was transformed to Polar coordinate system to imply it efficiently. Experimental results show that compared with present methods,the proposed mechanism has general application and better cluster performance under the same preserving intensity.
作者 王豪 徐正全
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第1期32-36,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(41671443) 武汉市应用基础研究计划资助项目(2016010101010024)
关键词 数据挖掘 轨迹聚类 隐私保护 差分隐私 二维拉普拉斯噪声 data mining trajectory clustering privacy preserving differential privacy two-dimensional Laplace noise
  • 相关文献

参考文献4

二级参考文献36

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005.
  • 3Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006.
  • 4Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008.
  • 5Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009.
  • 6Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010.
  • 7Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95.
  • 8Dwork C.The Promise of Differential Privacy.A Tutorial on Algorithmic Techniques[C] // 52nd Annual IEEE Symposium on Foundations of Computer Science.Palm Springs,CA,October 2011.
  • 9Agrawal R,Strikant R.Privacy-preserving data mining[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Managementof Data.Dallas,Texas,May 2000:439-450.
  • 10Sweeney L.K-anonymity:A Model for Protecting Privacy[J].International Journal on Uncertainty[J].Fuzziness and Knowledge-based Systems,2002,10 (5):557-570.

共引文献232

同被引文献58

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部