期刊文献+

硬化非高斯模型及其在首次穿越中的应用

Hardening non-Gaussian models and its application to first passage
原文传递
导出
摘要 提出了一个硬化非高斯过程的首次穿越概率计算方法.对比研究了Winterstein硬化模型、正交展开模型以及四阶矩标准化函数在硬化反应阶段的适用范围与精度.结果表明:四阶矩标准化函数精度最高,适用于峰度系数不小于2.333的应用场合;正交展开模型精度高于Winterstein硬化模型,适用范围分别为峰度系数不小于1.25和1.0的应用场合.基于硬化非高斯过程的峰度系数取值,以四阶矩标准化函数、正交展开模型以及Winterstein硬化模型为体系建立了首次穿越概率计算方法.最后,以硬化非高斯风压为例,验证了本文方法在首次穿越中的应用的可行性. A method for calculating the first passage probability of hardening non-Gaussian response processes was developed. Firstly,the application range and the accuracy of Winterstein hardening model,orthogonal expansion model and the fourth-moment standardization function in the hardening stage were compared and analyzed. Research results show that the accuracy of the fourth-order moment normalization function is the highest and applicable to kurtosis no less than 2.333;the accuracy of the orthogonal expansion model is higher than that of the Winterstein hardening model,and the applicable range is no less than 1.25 and 1.0,respectively.Then,based on the kurtosis value of hardening non-Gaussian processes,the method for calculating first-passage probability was established by using the fourth-moment standardization function,orthogonal expansion model and Winterstein hardening model.Finally,the hardening non-Gaussian wind pressure was used as an example to illustrate the application to the first passage of the developed method.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第1期87-91,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51422814,51738001,U1134209,U1434204) 中南大学创新驱动计划资助项目(2015CXS014) 中央高校基本科研业务费专项资金资助项目(2017zzts158)
关键词 硬化非高斯模型 首次穿越 四阶矩标准化函数 正交展开模型 Winterstein硬化模型 hardening non-Ganssian model first passage fourth-moment standardization function orthogonal expansion model Winterstein hardening model
  • 相关文献

参考文献2

二级参考文献22

  • 1甘春标.高斯白噪声激励下拟可积哈密顿系统的可靠性[J].振动与冲击,2006,25(2):145-146. 被引量:5
  • 2孙瑛,武岳,林志兴,沈世钊.大跨屋盖结构风压脉动的非高斯特性[J].土木工程学报,2007,40(4):1-5. 被引量:52
  • 3Vanmarck E H.On the distribution of the first passage time for normal stationary process.International Journal of Applied Mechanics,ASME,1975,42:215-220.
  • 4Madsen P H,Krenk S.An integral equation method for the first-passage problem in random vibration[J].International Journal of Applied Mechanics,ASME,1984,51:674-679.
  • 5Bayer V,Bucher C.Important sampling for first passage problems of nonlinear structures,International Journal of Probabilistic[J].Engineering Mechanics.1999,14:27-32.
  • 6Schuёller G I,Shinozuka M.Stochastic Methods in Structural Dynamics.Martinus Nijhoff Publishers,Dordrecht,1987.
  • 7Ditlevsen O,Madsen H O 著,何军译.结构可靠度方法[M].上海:同济大学出版社,2005.
  • 8Winterstein S R.Nonlinear vibration models for extremes and fatigue[J].International Journal of Engineering Mechanics,ASCE,1988,114(10):1772-1790.
  • 9Naess A.The response statistics of non-linear,second-order transformations to Gaussian loads[J].International Journal of Sound and Vibration,1987,115(1):103-129.
  • 10埃米尔-希缪,罗伯特·斯坎伦.风对结构的作用——风工程导论[M].刘尚培,项海帆,谢霁明,译.上海:同济大学出版社,1992.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部