摘要
带有周期边值条件的脉冲泛函微分方程经常会出现在物理学等问题的研究中.本文用单调迭代技术和拟线性方法来探讨一类脉冲泛函微分方程周期边值问题解的存在性及收敛性.研究表明,方程上下解的单调序列快速收敛于方程的唯一解.
Impulsive functional differential equations with periodic boundary value conditions often arise in the study of physics. In this paper, we obtain the existence and convergence of solution sequences for a class of the periodic boundary value problems for impulsive functional differential equations by the monotone iterative technique and the quasilinearization method. We find that the monotone sequences of upper and lower solutions converge quickly to the unique solution of the equation.
出处
《应用泛函分析学报》
2017年第4期378-385,共8页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金青年基金(11602092)
中央高校博士科研启动基金(2662015QD040)
华中农业大学教改项目(201638)
关键词
周期边值问题
解的存在
二阶收敛
periodic boundary value problem
existence of solution
converging quadratically