四元数群的Grbner-Shirshov基及其正规型
Grbner-Shirshov Bases and the Normal Form of the Quaternion Group
摘要
本文介绍了结合代数上的Grbner-Shirshov基理论,并找到了四元数群的一个Grbner-Shirshov基,从而得到四元数群的一组正规型.
In this paper, we introduce Grobner-Shirshov basis theory for associative algebras and obtain a Grobner-Shirshov basis and a normal form of the Quaternion Group.
出处
《惠州学院学报》
2017年第6期27-32,共6页
Journal of Huizhou University
基金
国家自然科学基金项目(11401246)
二级参考文献12
-
1kSCHREIER O. Die Untergruppen der freien Gruppen[J]. Abh. Math. Sere. Univ. Hamburg,1927(5):161 - 183.
-
2KUROSH A G. Nonassociative flee algebras and free products of algebras[J]. Mathematical Sbomik,1947(62):239 - 262.
-
3SHIRSHOV A I. On subalgebras of flee Lie Algebras[J]. Mathematical Sbornik,1953(33): 441 - 453.
-
4WITT E. Die Unterringe der freien Lieschen ring[J]. Mat. Z.,1956(64): 195 -216.
-
5SHIRSHOV A I. On subalgebras of free commutative and anti-commutative algebras[J]. Mathematical Sbomik, 1954(76): 81-88.
-
6SHESTAKOV P I, UMIRBAEV U U. Free Akivis Algebras, Primitive Elements, and Hyperalgebras[J]. Jounlal of Algebra, 2002(250): 533 - 548.
-
7BOKUT L A, KUKIN G P. Algorithmic and combinatorial algebra[M].Dordrecht: Kluwer Academic Publishers,1994.
-
8BOKUT L A, CHEN Y Q, ZHANG Z R. Grtibner-Shirshov bases method for Gelfand-Dorfman-Novikov algebras[J]. Journal of Algebra its Applications, DOI: 10,1142/S0219498817500013.
-
9KOZYBAEV D, MAKAR-L1MANOV L, UMIRBAEV U. The freiheitssatz and automorphisms of free right-symmetric algebras[J]. Asian-European Journal of Mathematics,2008(1): 243 - 254.
-
10KOZYBAEV D. On the structure of universal multiplicative algebras of free right-symmetric algebras. Vestnik KazNU,2007(3):3 - 9.