期刊文献+

基于关键功能模块挖掘的蛋白质功能预测 被引量:6

Prediction of Protein Functions Based on Essential Functional Modules Mining
下载PDF
导出
摘要 精确注释蛋白质功能是从分子水平理解生物体的关键.由于内在的困难和昂贵的开销,实验方法注释蛋白质功能已经很难满足日益增长的序列数据.为此,提出了许多基于蛋白质相互作用(Protein-protein interaction,PPI)网络的计算方法预测蛋白质功能.当今蛋白质功能预测的趋势是融合蛋白质相互作用网络和异构生物数据.本文提出一种基于多关系网络中关键功能模块挖掘的蛋白质功能预测算法.关键功能模块由一组紧密联系且共享生物功能的蛋白质组成,它们能与网络中的剩余部分较好地区分开来.算法通过从多关系网络的每一个简单网络中挖掘高内聚、低耦合的子图形成关键功能模块.关键功能模块中邻居蛋白质的功能用于注释待预测功能的蛋白质.每一个简单网络在蛋白质功能预测中的重要性各不相同.实验结果表明,提出的方法性能优于现有的蛋白质功能预测方法. The accurate annotation of protein functions is a key to understanding living organisms at the molecular level. With its inherent difficulty and expense, experimental characterization of protein functions cannot scale up to accommodate the vast amount of sequence data. As a result, many computational methods based on protein-protein interaction (PPI) networks have been proposed to predict the functions of proteins. Nowadays, the trend in protein functions prediction is to integrate PPI networks and heterogeneous biological data. A novel protein functions prediction algorithm was proposed based on mining essential functional modules from a multi-relational network. An essential functional module is a group of densely connected proteins with shared biological function and can be well-separated from the rest of the network. The proposed algorithm identified subgraph with high cohesion and low coupling on each single network derived from the multi-relational network to form essential functional modules. Functions of neighbor proteins within essential functional modules were used to annotate the testing protein. Each single network has different importance on the prediction of protein functions. Experiment results show that our method outperforms other protein functions prediction methods.
出处 《自动化学报》 EI CSCD 北大核心 2018年第1期183-192,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61772089) 湖南省自然科学基金(2016JJ3016) 湖南省教育厅项目(16A020 16C0137 17C0133) 水产高效健康生产湖南省协同创新中心资助~~
关键词 功能预测 多关系网络 蛋白质相互作用 关键功能模块 Function prediction, multiple network, protein-protein interaction (PPI), essential functional module
  • 相关文献

参考文献2

二级参考文献36

  • 1Yook S H, Oltvai Z N, Barabasi A L. Functional and topo- logical characterization of protein interaction networks. Pro- teomics, 2004, 4(4): 928-942.
  • 2Tang X W, Wang J X, Liu B B, Li M, Chen G, Pan Y. A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics, 2011, 12(1): 339.
  • 3Wu F X, Ressom H, Dunn M J, Wang J X, Peng X Q, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics, 2013, 13(2): 301-312.
  • 4Wang J X, Peng X Q, Peng W, Wu F X. Dynamic pro- tein interaction network construction and applications. Pro- teomics, 2014, 14(4-5): 338-352.
  • 5Mantzaris A V, Bassett D S, Wymbs N F, Estrada E, Porter M A, Mucha P J, Grafton S T, Higham D J. Dynamic net- work centrality summarizes learning in the human brain. Journal of Complex Networks, 2013, 1(1): 83-92.
  • 6Tu B P, Kudlicki A, Rowicka M, McKnight S L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 2005, 310(5751): 1152-1158.
  • 7Zhao B H, Wang J X, Li M, Wu F X, Pan Y. Prediction of essential proteins based on overlapping essential mod- ules. 1EEE Transactions on NanoBioscience, 2014, 13(4): 415-424.
  • 8Hawkins T, Chitale M, Luban S, Kihara D. PFP: automated prediction of gene ontology functional annotations with con- fidence scores using protein sequence data. Proteins: Struc- ture, Function, and Bioinformatics, 2009, 74(3): 566-582.
  • 9Zhao B H, Wang J X, Li M, Wu F X, Pan Y. Detect- ing protein complexes based on uncertain graph model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(3): 486-497.
  • 10Schwikowski B, Uetz P, Fields S. A network of protein protein interactions in yeast. Nature Biotechnology, 2000 18(12): 1257-1261.

共引文献15

同被引文献30

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部