期刊文献+

机器人机构方位特征集自动生成算法 被引量:4

Automatic Generation Algorithm of Position and Orientation Characteristic Set for Robot Mechanisms
下载PDF
导出
摘要 针对传统结构分析方法效率过低且难以得到完备结果的现状,将机器人机构学理论与现代计算机技术相结合,提出了机器人机构拓扑结构的数字建模方法,并给出方位特征集自动生成算法及流程。首先,提出拓扑结构组成要素的数学描述方法以及相应的数据结构,得到机器人拓扑结构的数字模型。然后,在揭示出方位特征集本质内涵的基础上,利用线性相关性理论制定相应的运算规则,进而提出方位特征集的自动生成算法和流程。最后,结合具体实例验证了上述数字建模方法和方位特征集自动生成算法的有效性。 Kinematic and dynamic performances of a robot mechanism is,to some extent,determined by its topological structure,so topological structure analysis and synthesis is an important tool to research and application of robot mechanisms. However,there is still no software for automatic structure analysis of robot mechanisms. The efficiency of manual analysis method is too low and it is difficult to get a complete result. In order to solve this problem,a digital modeling method for topological structure of robot mechanisms was proposed,and the automatic generation algorithm for position and orientation characteristic set(POC) of robot mechanisms was presented. The digital modeling for robot mechanisms was showed,including mathematical description of topological structure elements and the corresponding data structure. Secondly,the essence of POC set was uncovered,and the operation rules of POC for serial and parallel robot mechanisms were formulated based on the theory of linear dependence.Furthermore,the automatic generation algorithms of POC for serial and parallel robot mechanisms were achieved. Finally,five examples were provided to verify the efficiency of the digital modeling method and automatic generation algorithm mentioned above. The digital modeling method for topological structure and automatic generation algorithm of POC presented would be parts of the software being developed for automatic structure analysis and synthesis of robot mechanisms.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2018年第1期397-403,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金项目(51365036 51475050)
关键词 机器人机构 数字建模 方位特征集 自动生成算法 robot mechanism digital modeling position and orientation characteristic set automaticgeneration algorithm
  • 相关文献

参考文献5

二级参考文献77

共引文献69

同被引文献17

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部