期刊文献+

粒子群优化算法融合行为动力学的路径规划方法研究 被引量:3

Research on Path Planning Method of Particle Swarm Optimization Algorithm and Fusion Behavior Dynamics
下载PDF
导出
摘要 针对未知环境下采用竞争行为动力学协调方法进行移动机器人路径规划时存在机器人运动速度参数确定困难,并且在各基本行为竞争时容易产生行为参数振荡现象而导致规划出来的路径不优化等问题,提出了基于粒子群优化算法融合行为动力学进行路径规划的方法。该方法在行为动力学模型的基础上利用粒子群优化算法(Particle swarm optimization,PSO)对路径规划过程中的基本行为进行融合,代替了竞争行为动力学的行为参数协调,从而使移动机器人能够根据传感器采集的实时环境信息自动获取各个基本行为的权值。通过把该方法与基于竞争动力学行为协调方法的机器人路径规划进行了仿真对比实验,实验结果验证了该方法的可行性和优越性。 When using competitive behavior dynamics coordination methods to mobile robot path planning in unknown environment, the robot motion velocity parameters are difficult determined and it is easy to generate parameter oscillation in behavior competition, leading to the path of planning not optimization. A new path planning method based on particle swarm optimization for behavior dynamics algorithm is proposed. In this method, the particle swarm optimization algorithm is used to integrate the basic behaviors in path planning process based on the behavior dynamics model, which instead of the behavior parameter coordination of the competitive behavior dynamics. So that the robot can automatically obtain the weight of each basic behavior according to the real-time environment information collected by the vision senor. By comparing the proposed method with the competitive behavior dynamic coordination methods, the experiment results verify the feasibility and superiority of the proposed method.
出处 《机械科学与技术》 CSCD 北大核心 2018年第2期244-249,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(10872160) 陕西省科技厅项目(2016GY-027)资助
关键词 移动机器人 路径规划 行为动力学 粒子群优化 未知环境 mobile robot path planning behavior dynamics particle swarm optimization unknown environment
  • 相关文献

参考文献4

二级参考文献100

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2蒋新松.未来机器人技术发展方向的探讨[J].机器人,1996,18(5):285-291. 被引量:45
  • 3王越超.多机器人协作系统研究:博士论文[M].哈尔滨工业大学,1999..
  • 4Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 5Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 6Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 7Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 8De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 9Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 10Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.

共引文献691

同被引文献39

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部