期刊文献+

高吸附性PVA-co-PE纳米纤维水凝胶的制备及废水处理 被引量:5

Preparation of PVA-co-PE nanofiber hydrogel with high adsorbability and its application to effluent treatment
下载PDF
导出
摘要 以PVA-co-PE纳米纤维为基底,添加β-环糊精聚合物制备了一种高效水凝胶吸附剂。通过SEM、ATR等测试方法对其形貌和成分进行分析。同时以亚甲基蓝染料为模拟污染物,研究了不同影响因素对吸附效果的影响,并对其吸附热力学与动力学进行分析研究。结果表明,添加了β-环糊精聚合物的PVA-co-PE纳米纤维水凝胶对亚甲基蓝有着很好的吸附性,吸附过程符合Langmuir吸附模型,最大吸附量为61.596 mg/g。在亚甲基蓝初始质量浓度为200 mg/L以下时,去除率可达98%以上。该水凝胶对亚甲基蓝溶液的吸附符合二级动力学吸附模型。同时该改性水凝胶有着较好的循环吸附性能,循环吸附4次后去除率仍在50%以上。对不同染料进行吸附,吸附效果为甲基紫>亚甲基蓝>直接湖蓝5B>活性艳蓝19。 β-cyclodextrin polymer is used to the modification of PVA-co-PE nanofibers hydrogel to pre- pare high efficiency absorbent. The morphology and surface chemical structures of the modified hydro- gel are characterized by SEM and ATR, respectively. The Methylene Blue (MB) is used as a target pollut- ant and the effects of different factors on absorption property of Methylene Blue are studied. The adsorption thermodynamics and kinetics of Methylene Blue are also studied. The results show that the modified PVA-co-PE nanofibers hydrogel has a good adsorption property for Methylene Blue. The adsorption process fit for Langmuir adsorption isotherm. The maximum adsorptive capacity is 61.596 mg/g and the removal efficiency is more than 98% when the concentration of Methylene Blue is below 200 mg/L. The adsorption process is also fit for the pseudo-second-order kinetic model. The modified hydro- gel has a good cyclic adsorption performance and the removal efficiency is more than 50% after 4 times recycle. The adsorption property of modified hydrogel for different dyes is Methyl Violet〉Methylene Blue〉Direct Sky Blue 5B〉Reactive Brilliant Blue 19.
出处 《印染》 北大核心 2018年第2期5-10,18,共7页 China Dyeing and Finishing
基金 国家重点研发计划项目(2016YEC0400504)
关键词 印染废水 Β-环糊精聚合物 纳米纤维 水凝胶 改性 吸附 dyeing and finishing wastewater β-cyclodextrin polymer nanofiber hydrogel modification adsorption
  • 相关文献

参考文献1

二级参考文献33

  • 1Noll K E. Adsorption Technology for Air and Water Pollution Control. CRC Press, 1991, 8-13.
  • 2Martinez-Huitle C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews, 2006, 35(12): 13221-1340.
  • 3Aksu Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry, 2005, 40(3-4): 997- 1026.
  • 4Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y. In situ ion exchange synthesis of the novel Ag/AgBr/ BiOBr hybrid with highly efficient decontamination of pollutants. Chemical Communications (Cambridge), 2011, 47(25): 7054-7056.
  • 5Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183-191.
  • 6Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902-907.
  • 7Craciun M, Russo S, Yamamoto M, Tarucha S. Tuneable electronic properties in gmphene. Nano Today, 2011, 6(1): 42-60.
  • 8Frank I, Tanenbaum D M, van der Zande A M, McEuen P L. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2007, 25(6): 2558-2561.
  • 9Han Z, Kimouche A, Kalita D, Allain A, Arjmandi-Tash H, Reserbat-Plantey A, Marry L, Pairis S, Reita V, Bendiab N, Coraux J, Bouchiat V. Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Advanced Functional Materials, 2013, 24(7): 964- 970.
  • 10Kyzas G Z, Deliyanni E A, Matis K A. Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(2): 196-205.

共引文献5

同被引文献41

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部