期刊文献+

新型低压微功耗伪差分跨导放大器设计 被引量:2

A Novel Low-voltage Micro-power Pseudo-differential CMOS OTA
下载PDF
导出
摘要 本文针对全差分跨导放大器电源电压偏高、功耗较大,以及常规伪差分跨导放大器增益和共模抑制比不高的问题,采用带反相器和共模前馈的伪差分输入级、自偏置电流镜结构的输出级,以及正体偏置技术和TSMC 40nm CMOS工艺,设计一个新型低压微功耗高增益高共模抑制比的伪差分跨导放大器。Cadence Spectre仿真结果表明,在0.5V的电源电压下,该跨导放大器的开环增益为51.8dB,单位增益带宽为18.6 MHz,相位裕度为70°,共模抑制比达到135dB,电源抑制比达到107dB,而功耗仅为3μW,具有较好的综合性能,可作为大多数要求较高的前端微弱信号放大器。 In this paper, a novel pseudo-differential transconductance amplifier with low-voltage micro- power high-gain high common-mode rejection ratio is designed, aimed at the problems of high power supply voltage, high power consumption in the full-differential transconductance amplifier, as well as small gain and low common mode rejection ratio in the conventional pseudo-differential transconductance amplifier. The proposed transeonductance amplifier is composed of two stages. The first stage is a pseudo-differential input structure with inverter and common mode feedforward. The second stage is a self-bias current mirror output structure. The positive body bias technique and the TSMC 40nm CMOS process are adopted. Cadence Specter simulation results show that under the power supply voltage of 0.5 V,the transconductanee amplifier open-loop gain is 51.8 dB, the unit gain bandwidth is 18.6 MHz, the phase margin is 70°,the common mode rejection ratio is 135dB, and the power supply rejection ratio is 107 dB,while the power consumption is only 3 μW. This amplifier has good comprehensive performance and can be used for most front-end weak signal amplifiers with higher demanding.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2018年第1期17-24,共8页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(61361011) 广西高等学校优秀中青年骨干教师培养工程项目(GXQG022014002)
关键词 跨导放大器 伪差分 反相器 共模前馈 自偏置电流镜 正体偏置 OTA pseudo-differential inverter common mode feedforward self-bias current mirror positive body bias
  • 相关文献

参考文献4

二级参考文献17

  • 1Ahmed N Mohieldin, Edgar Sanchez Sinencio, Jose Silva Martinez. A low voltage fully balanced OTA with common mode feedforward and inherent common mode feedback detector [ J ]. IEEE J. Solid-State Circuits, 2003,38 (4) : 663 - 668.
  • 2Palaskas Y, Tsividis Y, Dynamic range optimization of weakly nonlinear fully balanced, G-C filters with power dissipation constraints[J]. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 2003,50: 293 - 296.
  • 3Bahmani F, Sandaez-Sinencio E. A highly linear pseudo-differential transconductance[C]//Proc. 30th Fur. Solid-State Circuits Conf. (ESSCIRC'04), Sep,2004:111 - 114.
  • 4Wyszynski A, Schaumann R. Avoiding common mode feedback in continuous-time Gm-C filters by use of lossy integrators[ C]. IEEE International Symposium on Circuits and Systems, 1994,5:281 -284.
  • 5BULT K, GEELEN G J G M. A fast-settling CMOS op amp for SC circuits with 90-dB DC gain[-J~. IEEE Journal of Solid-State Circuits, 1990, 25(6) : 1379-1384.
  • 6URBAN C, MOON J E, MUKUND P R. Designing bulk-driven MOSFETs for ultra-low-voltage analogue applications[-J~. Semiconductor Science and Technology, 2010, 25 (11) : 1-8.
  • 7RAGHAV H S, SINGH B P, MAHESHWARI S. Design of low voltage OTA for bio-medical application[-C~// Emerging Research Areas and 2013 International Conference on Microelectronics. New York:IEEE Press, 2013: 1-5.
  • 8SONI M B H, DHAVSE M R N. Design of operational transconduetance amplifier using 0.35 /~m TechnologyEJ~. International Journal of Wisdom Based Computing, 2011,1 (2) : 28-31.
  • 9LI Yi-lei, HAN Ke-feng, TAN Xi, et al. Transconductance enhancement method for operational transconductance amplifiers[J]. Electronics Letters, 2010,46 (19) ~ 1321-1323.
  • 10YAN Z, MAK P I, MARTINS R P. Double recycling technique for folded-cascode OTAEJ]. Analog Integrated Circuits and Signal Processing, 2012, 71(1): 137-141.

共引文献10

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部