期刊文献+

扰动广义混合变分不等式的可解性

Solvability for Generalized Mixed Variational Inequalities with Perturbation
下载PDF
导出
摘要 本文主要研究扰动的广义混合变分不等式解的存在性问题。对集值映射引入2种扰动方式:一种是通过连续的单值映射进行扰动;另一种是通过约束集的闸锥内部的向量进行扰动。在较弱的强制性条件下证明了扰动问题解的存在性。本文的结果在经济领域的某些价格均衡模型中有潜在的应用价值,推广和改善了一些新近文献的相应结果。 The existence of solutions for a generalized mixed variational inequality with perturbation is investigated in this paper. Two perturbed ways of a set valued mapping are introduced: one is perturbed by a continuous and single-valued mapping,and the other is perturbed by a vector in the interior of the barrier cone of the constrained set. Under rather weak conditions, it is shown that the generalized mixed variational inequality perturbed by two ways mentioned above has a solution. The main results may be used in some price equilibrium model in the field of economics, which generalize and improve some known results.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2018年第1期76-83,共8页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11561008) 广西自然科学基金(2014GXNSFAA118006) 广西高校优秀中青年骨干教师培养工程(桂教人[2014]39号) 广西八桂学者专项(WBS-2014-04) 广西民族大学相思湖青年学者(重点)创新团队(民大2015-13-02)
关键词 混合变分不等式 扰动 存在性 强制性条件 mixed variational inequality perturbation existence coereivity condition
  • 相关文献

参考文献3

二级参考文献31

  • 1王敏,何诣然.Banach空间中集值映射的广义变分不等式问题[J].四川师范大学学报(自然科学版),2006,29(4):447-449. 被引量:6
  • 2何诣然.一个关于混合变分不等式问题的投影算法[J].数学物理学报(A辑),2007,27(2):215-220. 被引量:10
  • 3Xiu Naihua,数学进展,1999年,28卷,3期,193页
  • 4Schaible Siegfried,Math Programming,1995年,70卷,191页
  • 5Harker P T,Math Programming,1990年,48卷,161页
  • 6Fang S C, Peterson E L. Generalized variational inequalities[ J ]. J Optim .Theory Appl, 1982,38 (3) :363 -383.
  • 7Daniilidis A, Hadjisavvas N. Coercivity conditions and variational inequalities[ J]. Ma!h Programming, 1999, A86(2) :433 -438.
  • 8Lie Y R. Stable pseudomonotone variational inequality in reflexive Banaeh spaces [ J ]. J Math Anal Appl, 2007,330 (1): 352 - 363.
  • 9Qiao F S, He Y R. Strict feasibility of pseudomonotone set - valued variational inequalities [ J ]. Optimization, 2011,60 ( 3 ) : 303 - 310.
  • 10He Y R. The Tikhonov Regularization Method for Set- Valued Variational Inequalities[ J/OL]. Abst Appl Anal,2012, http :// dx. doi. org/10.1155/2012/172061.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部