期刊文献+

Polymer brushes on hydrogen-terminated silicon substrates via stable Si--C bond

Polymer brushes on hydrogen-terminated silicon substrates via stable Si—C bond
原文传递
导出
摘要 We demonstrate a straightforward and efficient method for the creation of polymer brushes on hydrogen-terminated silicon substrates through the UV-induced photopoiymerization. The surface grafting polymerization is applicable to a series of monomers, allowing the direct formation of homogeneous polymer coatings ranging from hydrophilic poly(2-isopropenyl-2-oxazoline) (PIPOx), amphiphilic poly(N-isopropyl acrylamide) (PNIPAM), to hydrophobic polystyrene (PS) and poly(4- (1H,1H,2H,2H-perfiuorohexyl)oxymethylstyrene) (PPHMS) on Si(100) and Si(lll) surfaces via stable Si--C bonds. Polymerization kinetic investigation indicates a linear increase of polymer layer thickness with the polymerization time. Moreover, the as-prepared polymer brushes exhibit superior stability against basic conditions in contrast to those that were formed on silicon substrates via conventional Si--O--C bond. We demonstrate a straightforward and efficient method for the creation of polymer brushes on hydrogen-terminated silicon substrates through the UV-induced photopoiymerization. The surface grafting polymerization is applicable to a series of monomers, allowing the direct formation of homogeneous polymer coatings ranging from hydrophilic poly(2-isopropenyl-2-oxazoline) (PIPOx), amphiphilic poly(N-isopropyl acrylamide) (PNIPAM), to hydrophobic polystyrene (PS) and poly(4- (1H,1H,2H,2H-perfiuorohexyl)oxymethylstyrene) (PPHMS) on Si(100) and Si(lll) surfaces via stable Si--C bonds. Polymerization kinetic investigation indicates a linear increase of polymer layer thickness with the polymerization time. Moreover, the as-prepared polymer brushes exhibit superior stability against basic conditions in contrast to those that were formed on silicon substrates via conventional Si--O--C bond.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第1期171-174,共4页 中国化学快报(英文版)
基金 the support of Jilin Provincial Department of Education (No. 2014511) Department of Changchun Science and Technology(No. 14KP023) Department of Science and Technology of Jiangsu Province(No. BK20151189)
关键词 Polymer brushesSilicon substratesSIPGPSurface wettabilitySurface functionalization Polymer brushesSilicon substratesSIPGPSurface wettabilitySurface functionalization
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部